ﻻ يوجد ملخص باللغة العربية
It has recently been recognized that the convective velocities achieved in the current solar convection simulations might be over-estimated. The newly-revealed effects of the prevailing small-scale magnetic field within the convection zone may offer possible solutions to this problem. The small-scale magnetic fields can reduce the convective amplitude of small-scale motions through the Lorentz-force feedback, which concurrently inhibits the turbulent mixing of entropy between upflows and downflows. As a result, the effective Prandtl number may exceed unity inside the solar convection zone. In this paper, we propose and numerically confirm a possible suppression mechanism of convective velocity in the effectively high-Prandtl number regime. If the effective horizontal thermal diffusivity decreases (the Prandtl number accordingly increases), the subadiabatic layer which is formed near the base of the convection zone by continuous depositions of low entropy transported by adiabatically downflowing plumes is enhanced and extended. The global convective amplitude in the high-Prandtl thermal convection is thus reduced especially in the lower part of the convection zone via the change in the mean entropy profile which becomes more subadiabatic near the base and less superadiabatic in the bulk.
(abridged) Context: The ratio of kinematic viscosity to thermal diffusivity, the Prandtl number, is much smaller than unity in stellar convection zones. Aims: To study the statistics of convective flows and energy transport as functions of the Prandt
We present numerical simulations of hydrodynamic overshooting convection in local Cartesian domains. We find that a substantial fraction of the lower part of the convection zone (CZ) is stably stratified according to the Schwarzschild criterion while
(abridged) Context: Turbulent diffusion of large-scale flows and magnetic fields play major roles in many astrophysical systems. Aims: Our goal is to compute turbulent viscosity and magnetic diffusivity, relevant for diffusing large-scale flows and m
Efforts to detect low-mass exoplanets using stellar radial velocities (RVs) are currently limited by magnetic photospheric activity. Suppression of convective blueshift is the dominant magnetic contribution to RV variability in low-activity Sun-like
In this paper, we investigate the upward overshooting by three-dimensional numerical simulations. We find that the above convectively stable zone can be partitioned into three layers: the thermal adjustment layer (mixing both entropy and material), t