ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling the Galactic Halo with APOGEE: I. Chemical and Kinematical Investigation of Distinct Metal-Poor Populations

254   0   0.0 ( 0 )
 نشر من قبل Christian Hayes
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find two chemically distinct populations separated relatively cleanly in the [Fe/H] - [Mg/Fe] plane, but also distinguished in other chemical planes, among metal-poor stars (primarily with metallicities [Fe/H] $< -0.9$) observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and analyzed for Data Release 13 (DR13) of the Sloan Digital Sky Survey. These two stellar populations show the most significant differences in their [X/Fe] ratios for the $alpha$-elements, C+N, Al, and Ni. In addition to these populations having differing chemistry, the low metallicity high-Mg population (which we denote the HMg population) exhibits a significant net Galactic rotation, whereas the low-Mg population (or LMg population) has halo-like kinematics with little to no net rotation. Based on its properties, the origin of the LMg population is likely as an accreted population of stars. The HMg population shows chemistry (and to an extent kinematics) similar to the thick disk, and is likely associated with $it in$ $it situ$ formation. The distinction between the LMg and HMg populations mimics the differences between the populations of low- and high-$alpha$ halo stars found in previous studies, suggesting that these are samples of the same two populations.

قيم البحث

اقرأ أيضاً

The formation processes that led to the current Galactic stellar halo are still under debate. Previous studies have provided evidence for different stellar populations in terms of elemental abundances and kinematics, pointing to different chemical an d star-formation histories. In the present work we explore, over a broader range in metallicity (-2.2 < [Fe/H] < -0.5), the two stellar populations detected in the first paper of this series from metal-poor stars in DR13 of the Apache Point Observatory Galactic Evolution Experiment (APOGEE). We aim to infer signatures of the initial mass function (IMF) and the most APOGEE-reliable alpha-elements (O, Mg, Si and Ca). Using simple chemical-evolution models, for each population. Compared with the low-alpha population, we obtain a more intense and longer-lived SFH, and a top-heavier IMF for the high-alpha population.
The galaxy formation process in the $Lambda$-Cold Dark Matter scenario can be constrained from the analysis of stars in the Milky Ways halo system. We examine the variation of chemical abundances in distant halo stars observed by the Apache Point Gal actic Evolution Experiment (APOGEE), as a function of distance from the Galactic center ($r$) and iron abundance ([M/H]), in the range 5 $lesssim r lesssim$ 30 kpc and $-2.5 <$ [M/H] $<$ 0.0. We perform a statistical analysis of the abundance ratios derived by the APOGEE pipeline (ASPCAP) and distances calculated by several approaches. Our analysis reveals signatures of a different chemical enrichment between the inner and outer regions of the halo, with a transition at about 15 kpc. The derived metallicity distribution function exhibits two peaks, at [M/H] $sim -1.5$ and $sim -2.1$, consistent with previously reported halo metallicity distributions. We obtain a difference of $sim 0.1$ dex for $alpha$-element-to-iron ratios for stars at $r > 15$ kpc and [M/H] $> -1.1$ (larger in the case of O, Mg and S) with respect to the nearest halo stars. This result confirms previous claims for low-$alpha$ stars found at larger distances. Chemical differences in elements with other nucleosynthetic origins (Ni, K, Na, and Al) are also detected. C and N do not provide reliable information about the interstellar medium from which stars formed because our sample comprises RGB and AGB stars and can experience mixing of material to their surfaces.
We present the resolved stellar populations in the inner and outer halo of the nearby lenticular galaxy NGC~3115. Using deep HST observations, we analyze stars two magnitudes fainter than the tip of the red giant branch (TRGB). We study three fields along the minor axis of this galaxy, 19, 37 and 54 kpc from its center -- corresponding to 7, 14, 21 effective radii (r_{e}). Even at these large galactocentric distances, all of the fields are dominated by a relatively enriched population, with the main peak in the metallicity distribution decreasing with radius from [Z/H] ~ -0.5 to -0.65. The fraction of metal-poor stars ([Z/H] < -0.95) increases from 17%, at 16-37 kpc, to 28%, at ~54 kpc. We observe a distinct low metallicity population (peaked at [Z/H] ~ -1.3 and with total mass 2*10^{10}M_{odot} ~ 14% of the galaxys stellar mass) and argue that this represents the detection of an underlying low metallicity stellar halo. Such halos are generally predicted by galaxy formation theories and have been observed in several late type galaxies including the Milky Way and M31. The metallicity and spatial distribution of the stellar halo of NGC~3115 are consistent with the galaxys globular cluster system, which has a similar low metallicity population that becomes dominant at these large radii. This finding supports the use of globular clusters as bright chemo-dynamical tracers of galaxy halos. These data also allow us to make a precise measurement of the magnitude of the TRGB, from which we derive a distance modulus of NGC~3115 of 30.05pm0.05pm0.10_{sys} (10.2pm0.2pm0.5_{sys} Mpc).
We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H] = -1.5 and -2.2, respectively. From consideration of the absolute carbon abundances for our sample, A(C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP-s stars (those with strong overabundances of elements associated with the s-process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP-s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP-s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.
Chemistry and kinematic studies can determine the origins of stellar population across the Milky Way. The metallicity distribution function of the bulge indicates that it comprises multiple populations, the more metal-poor end of which is particularl y poorly understood. It is currently unknown if metal-poor bulge stars ([Fe/H] $<$ -1 dex) are part of the stellar halo in the inner most region, or a distinct bulge population or a combination of these. Cosmological simulations also indicate that the metal-poor bulge stars may be the oldest stars in the Galaxy. In this study, we successfully target metal-poor bulge stars selected using SkyMapper photometry. We determine the stellar parameters of 26 stars and their elemental abundances for 22 elements using R$sim$ 47,000 VLT/UVES spectra and contrast their elemental properties with that of other Galactic stellar populations. We find that the elemental abundances we derive for our metal-poor bulge stars have much lower overall scatter than typically found in the halo. This indicates that these stars may be a distinct population confined to the bulge. If these stars are, alternatively, part of the inner-most distribution of the halo, this indicates that the halo is more chemically homogeneous at small Galactic radii than at large radii. We also find two stars whose chemistry is consistent with second-generation globular cluster stars. This paper is the first part of the Chemical Origins of Metal-poor Bulge Stars (COMBS) survey that will chemo-dynamically characterize the metal-poor bulge population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا