ﻻ يوجد ملخص باللغة العربية
Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.
A universal definition of non-Markovianity for open systems dynamics is proposed. It is extended from the classical definition to the quantum realm by showing that a `transition from the Markov to the non-Markov regime occurs when the correlations be
We show that non-Markovian open quantum systems can exhibit exact Markovian dynamics up to an arbitrarily long time; the non-Markovianity of such systems is thus perfectly hidden, i.e. not experimentally detectable by looking at the reduced dynamics
A Markovian process of a system is defined classically as a process in which the future state of the system is fully determined by only its present state, not by its previous history. There have been several measures of non-Markovianity to quantify t
Detuned systems can spontaneously achieve a synchronous dynamics and display robust quantum correlations in different local and global dissipation regimes. Beyond the Markovian limit, information backflow from the environment becomes a crucial mechan
We provide a rigorous analysis of the quantum optimal control problem in the setting of a linear combination $s(t)B+(1-s(t))C$ of two noncommuting Hamiltonians $B$ and $C$. This includes both quantum annealing (QA) and the quantum approximate optimiz