ﻻ يوجد ملخص باللغة العربية
We consider the extension problem for Lie algebroids over schemes over a field. Given a locally free Lie algebroid Q over a scheme (X,O), and a sheaf of finitely generated Lie O-algebras L, we determine the obstruction to the existence of extensions 0 --> L --> E --> Q --> 0, and classify the extensions in terms of a suitable Lie algebroid hypercohomology group. In the preliminary sections we study free Lie algebroids and recall some basic facts about Lie algebroid hypercohomology.
We show that the hypercohomology of the Chevalley-Eilenberg-de Rham complex of a Lie algebroid L over a scheme with coefficients in an L-module can be expressed as a derived functor. We use this fact to study a Hochschild-Serre type spectral sequence attached to an extension of Lie algebroids.
In this paper, first we show that under the assumption of the center of h being zero, diagonal non-abelian extensions of a regular Hom-Lie algebra g by a regular Hom-Lie algebra h are in one-to-one correspondence with Hom-Lie algebra morphisms from g
In this paper we prove Lie algebro
We present the geometric formulation of gravity based on the mathematical structure of a Lie Algebroid. We show that this framework provides the geometrical setting to describe the gauge propriety of gravity.
Suppose the ground field to be algebraically closed and of characteristic different from $2$ and $3$. All Heisenberg Lie superalgebras consist of two sup