ﻻ يوجد ملخص باللغة العربية
Convolutional neural networks have demonstrated high accuracy on various tasks in recent years. However, they are extremely vulnerable to adversarial examples. For example, imperceptible perturbations added to clean images can cause convolutional neural networks to fail. In this paper, we propose to utilize randomization at inference time to mitigate adversarial effects. Specifically, we use two randomization operations: random resizing, which resizes the input images to a random size, and random padding, which pads zeros around the input images in a random manner. Extensive experiments demonstrate that the proposed randomization method is very effective at defending against both single-step and iterative attacks. Our method provides the following advantages: 1) no additional training or fine-tuning, 2) very few additional computations, 3) compatible with other adversarial defense methods. By combining the proposed randomization method with an adversarially trained model, it achieves a normalized score of 0.924 (ranked No.2 among 107 defense teams) in the NIPS 2017 adversarial examples defense challenge, which is far better than using adversarial training alone with a normalized score of 0.773 (ranked No.56). The code is public available at https://github.com/cihangxie/NIPS2017_adv_challenge_defense.
This paper investigates the theory of robustness against adversarial attacks. It focuses on the family of randomization techniques that consist in injecting noise in the network at inference time. These techniques have proven effective in many contex
In the manufacturing process of Carbon Fiber Reinforced Polymer (CFRP) mirrors (replicated from a mandrel) the orientation of the unidirectional carbon fiber layers (layup) has a direct influence on different aspects of the final product, like its ge
Generative Adversarial Networks (GANs) have shown considerable promise for mitigating the challenge of data scarcity when building machine learning-driven analysis algorithms. Specifically, a number of studies have shown that GAN-based image synthesi
Machine learning is a tool for building models that accurately represent input training data. When undesired biases concerning demographic groups are in the training data, well-trained models will reflect those biases. We present a framework for miti
This inherent relations among multiple face analysis tasks, such as landmark detection, head pose estimation, gender recognition and face attribute estimation are crucial to boost the performance of each task, but have not been thoroughly explored si