ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum noise of electron-phonon heat current

57   0   0.0 ( 0 )
 نشر من قبل Bayan Karimi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze heat current fluctuations between electrons and phonons in a metal. In equilibrium we recover the standard result consistent with the fluctuation-dissipation theorem. Here we show that heat current noise at finite frequencies, remains non-vanishing down to zero temperature. We briefly discuss the impact of electron-phonon heat current fluctuations on calorimetry, in particular in the regime of single microwave-photon detection.

قيم البحث

اقرأ أيضاً

We discuss valley current, which is carried by quasiparticles in graphene. We show that the valley current arises owing to a peculiar term in the electron-phonon collision integral that mixes the scalar and vector gauge-field-like vertices in the ele ctron-phonon interaction. This mixing makes collisions of phonons with electrons sensitive to their chirality, which is opposite in two valleys. As a result of collisions with phonons, electrons of the different valleys deviate in opposite directions. Breaking the spatial inversion symmetry is not needed for a valley-dependent deviation of the quasiparticle current. The effect exists both in pristine graphene or bilayer graphene samples, and it increases with temperature owing to a higher rate of collisions with phonons at higher temperatures. The valley current carried by quasiparticles could be detected by measuring the electric current using a nonlocal transformer of a suitable design.
We consider the deformation potential mechanism of the electron-phonon coupling in metal films and investigate the intensity of the associated heat transfer between the electron and phonon subsystems. The focus is on the temperature region below dime nsional crossover $T<T^{ast}$ where the thermally relevant vibrations are described in terms of a quasi-two-dimensional elastic medium, while electron excitations behave as a three-dimensional Fermi gas. We derive an explicit expression for the power $Pleft( Tright) $ of the electron-phonon heat transfer which explains the behavior observed in some experiments including the case of metallic film supported by an insulating membrane with different acoustic properties. It is shown that at low temperatures the main contribution is due to the coupling with Lambs dilatational and flexural acoustic modes.
We present measurements of current noise in quantum point contacts as a function of source-drain bias, gate voltage, and in-plane magnetic field. At zero bias, Johnson noise provides a measure of the electron temperature. At finite bias, shot noise a t zero field exhibits an asymmetry related to the 0.7 structure in conductance. The asymmetry in noise evolves smoothly into the symmetric signature of spin-resolved electron transmission at high field. Comparison to a phenomenological model with density-dependent level splitting yields quantitative agreement. Additionally, a device-specific contribution to the finite-bias noise, particularly visible on conductance plateaus (where shot noise vanishes), agrees quantitatively with a model of bias-dependent electron heating.
We explore phonon-mediated quantum transport through electronic noise characterization of a commercial CMOS transistor. The device behaves as a single electron transistor thanks to a single impurity atom in the channel. A low noise cryogenic CMOS tra nsimpedance amplifier is exploited to perform low-frequency noise characterization down to the single electron, single donor and single phonon regime simultaneously, not otherwise visible through standard stability diagrams. Single electron tunneling as well as phonon-mediated features emerges in rms-noise measurements. Phonons are emitted at high frequency by generation-recombination phenomena by the impurity atom. The phonon decay is correlated to a Lorentzian $1/f^2$ noise at low frequency.
Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities, and superior electrical and optoelectronic properties. Applications such as thermal management, photodetection, l ight emission, data communication, high-speed electronics and light harvesting require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times, for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism through distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا