ﻻ يوجد ملخص باللغة العربية
The Neptunian satellite system is unusual. The major satellites of Jupiter, Saturn, and Uranus are all in prograde, low-inclination orbits. Neptune on the other hand, has the fewest satellites, and most of the systems mass is within one irregular satellite, Triton. Triton was most likely captured by Neptune and destroyed the primordial regular satellite system. We investigate the interactions between a newly captured Triton and a prior Neptunian satellite system. We find that a prior satellite system with a mass ratio similar to the Uranian system or smaller has a substantial likelihood of reproducing the current Neptunian system, while a more massive system has a low probability of leading to the current configuration. Moreover, Tritons interaction with a prior satellite system may offer a mechanism to decrease its high initial semimajor axis fast enough to preserve small irregular satellites (Nereid-like) that might otherwise be lost during a prolonged Triton circularization via tides alone.
In the current model of early Solar System evolution, the stable members of the Jovian and Neptunian Trojan populations were captured into resonance from the leftover reservoir of planetesimals during the outward migration of the giant planets. As a
The formation of trans-Neptunian satellite systems at the stage of rarefied preplanetesimals (i.e., condensations of dust and/or objects less than 1 m in diameter) is discussed. It is assumed that trans-Neptunian objects (including those with satelli
The D68 ringlet is the innermost feature in Saturns rings. Four clumps that appeared in D68 around 2014 remained evenly spaced about 30 degrees apart and moved very slowly relative to each other from 2014 up until the last measurements were taken in
We present the results of an investigation to determine the longitudinal (zonal) distributions and temporal evolution of ices on the surface of Triton. Between 2002 and 2014, we obtained 63 nights of near-infrared (0.67-2.55 $mu$m) spectra using the
We carried out an extensive analysis of the stability of the outer solar system, making use of the frequency analysis technique over short-term integrations of nearly a hundred thousand test particles, as well as a statistical analysis of 200, 1 Gyr