ﻻ يوجد ملخص باللغة العربية
An approach to optimal actuator design based on shape and topology optimisation techniques is presented. For linear diffusion equations, two scenarios are considered. For the first one, best actuators are determined depending on a given initial condition. In the second scenario, optimal actuators are determined based on all initial conditions not exceeding a chosen norm. Shape and topological sensitivities of these cost functionals are determined. A numerical algorithm for optimal actuator design based on the sensitivities and a level-set method is presented. Numerical results support the proposed methodology.
Optimal actuator design for a vibration control problem is calculated. The actuator shape is optimized according to the closed-loop performance of the resulting linear-quadratic regulator and a penalty on the actuator size. The optimal actuator shape
In this report, we present a new Linear-Quadratic Semistabilizers (LQS) theory for linear network systems. This new semistable H2 control framework is developed to address the robust and optimal semistable control issues of network systems while pres
We reconsider the variational integration of optimal control problems for mechanical systems based on a direct discretization of the Lagrange-dAlembert principle. This approach yields discrete dynamical constraints which by construction preserve impo
We study a multiscale approach for the control of agent-based, two-population models. The control variable acts over one population of leaders, which influence the population of followers via the coupling generated by their interaction. We cast a qua
The goal of this paper is to make Optimal Experimental Design (OED) computationally feasible for problems involving significant computational expense. We focus exclusively on the Mean Objective Cost of Uncertainty (MOCU), which is a specific methodol