ترغب بنشر مسار تعليمي؟ اضغط هنا

Cores of graded algebras with triangular decomposition

64   0   0.0 ( 0 )
 نشر من قبل Gwyn Bellamy
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider self-injective finite-dimensional graded algebras admitting a triangular decomposition. In a preceding paper, we have shown that the graded module category of such an algebra is a highest weight category and has tilting objects in the sense of Ringel. In this paper we focus on the degree zero part of the algebra, the core of the algebra. We show that the core captures essentially all relevant information about the graded representation theory. Using tilting theory, we show that the core is cellular. We then describe a canonical construction of a highest weight cover, in the sense of Rouquier, of this cellular algebra using a finite subquotient of the highest weight category. Thus, beginning with a self-injective graded algebra admitting a triangular decomposition, we canonically construct a quasi-hereditary algebra which encodes key information, such as graded multiplicities, of the original algebra. Our results are general and apply to a wide variety of examples, including restricted enveloping algebras, Lusztigs small quantum groups, hyperalgebras, finite quantum groups, and restricted rational Cherednik algebras. We expect that the cell modules and quasi-hereditary algebras introduced here will provide a new way of understanding these important examples.



قيم البحث

اقرأ أيضاً

We show that the category of graded modules over a finite-dimensional graded algebra admitting a triangular decomposition can be endowed with the structure of a highest weight category. When the algebra is self-injective, we show furthermore that thi s highest weight category has tilting modules in the sense of Ringel. This provides a new perspective on the representation theory of such algebras, and leads to several new structures attached to them. There are a wide variety of examples in algebraic Lie theory to which this applies: restricted enveloping algebras, Lusztigs small quantum groups, hyperalgebras, finite quantum groups, and restricted rational Cherednik algebras.
The essential feature of a root-graded Lie algebra L is the existence of a split semisimple subalgebra g with respect to which L is an integrable module with weights in a possibly non-reduced root system S of the same rank as the root system R of g. Examples include map algebras (maps from an affine scheme to g, S = R), matrix algebras like sl_n(A) for a unital associative algebra A (S = R = A_{n-1}), finite-dimensional isotropic central-simple Lie algebras (S properly contains R in general), and some equivariant map algebras. In this paper we study the category of representations of a root-graded Lie algebra L which are integrable as representations of g and whose weights are bounded by some dominant weight of g. We link this category to the module category of an associative algebra, whose structure we determine for map algebras and sl_n(A). Our results unify previous work of Chari and her collaborators on map algebras and of Seligman on isotropic Lie algebras.
We introduce graded Hecke algebras H based on a (possibly disconnected) complex reductive group G and a cuspidal local system L on a unipotent orbit of a Levi subgroup M of G. These generalize the graded Hecke algebras defined and investigated by Lus ztig for connected G. We develop the representation theory of the algebras H. obtaining complete and canonical parametrizations of the irreducible, the irreducible tempered and the discrete series representations. All the modules are constructed in terms of perverse sheaves and equivariant homology, relying on work of Lusztig. The parameters come directly from the data (G,M,L) and they are closely related to Langlands parameters. Our main motivation for considering these graded Hecke algebras is that the space of irreducible H-representations is canonically in bijection with a certain set of logarithms of enhanced L-parameters. Therefore we expect these algebras to play a role in the local Langlands program. We will make their relation with the local Langlands correspondence, which goes via affine Hecke algebras, precise in a sequel to this paper.
In this paper, we will consider derived equivalences for differential graded endomorphism algebras by Kellers approaches. First we construct derived equivalences of differential graded algebras which are endomorphism algebras of the objects from a tr iangle in the homotopy category of differential graded algebras. We also obtain derived equivalences of differential graded endomorphism algebras from a standard derived equivalence of finite dimensional algebras. Moreover, under some conditions, the cohomology rings of these differential graded endomorphism algebras are also derived equivalent. Then we give an affirmative answer to a problem of Dugas cite{Dugas2015} in some special case.
126 - Kari Vilonen , Ting Xue 2020
In this paper we construct full support character sheaves for stably graded Lie algebras. Conjecturally these are precisely the cuspidal character sheaves. Irreducible representations of Hecke algebras associated to complex reflection groups at roots of unity enter the description. We do so by analysing the Fourier transform of the nearby cycle sheaves constructed in [GVX2].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا