ترغب بنشر مسار تعليمي؟ اضغط هنا

The Combined Ultraviolet, Optical, and Near-Infrared Light Curves of the Kilonova Associated with the Binary Neutron Star Merger GW170817: Unified Data Set, Analytic Models, and Physical Implications

66   0   0.0 ( 0 )
 نشر من قبل V. Ashley Villar
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first effort to aggregate, homogenize, and uniformly model the combined ultraviolet, optical, and near-infrared dataset for the electromagnetic counterpart of the binary neutron star merger GW170817. By assembling all of the available data from 18 different papers and 46 different instruments, we are able to identify and mitigate systematic offsets between individual datasets, and to identify clear outlying measurements, with the resulting pruned and adjusted dataset offering an opportunity to expand the study of the kilonova. The unified dataset includes 647 individual flux measurements, spanning 0.45 to 29.4 days post-merger, and thus has greater constraining power for physical models than any single dataset. We test a number of semi-analytical models and find that the data are well modeled with a three-component kilonova model: a blue lanthanide-poor component with Mej~0.020 Msol and vej~0.27c; an intermediate opacity purple component with Mej~0.047 Msol and vej~0.15c; and a red lanthanide-rich component with Mej~0.011 Msol and vej~0.14c. We further explore the possibility of ejecta asymmetry and its impact on the estimated parameters. From the inferred parameters we draw conclusions about the physical mechanisms responsible for the various ejecta components, the properties of the neutron stars, and, combined with an up-to-date merger rate, the implications for r-process enrichment via this channel. To facilitate future studies of this keystone event we make the unified dataset and our modeling code public.

قيم البحث

اقرأ أيضاً

We present UV, optical, and NIR photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced LIGO/Virgo, the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart a t $0.47$ days to $18.5$ days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2 (GS/F2), and the {it Hubble Space Telescope} ({it HST}). The spectral energy distribution (SED) inferred from this photometry at $0.6$ days is well described by a blackbody model with $Tapprox 8300$ K, a radius of $Rapprox 4.5times 10^{14}$ cm (corresponding to an expansion velocity of $vapprox 0.3c$), and a bolometric luminosity of $L_{rm bol}approx 5times10^{41}$ erg s$^{-1}$. At $1.5$ days we find a multi-component SED across the optical and NIR, and subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/NIR colors. Modeling the entire data set we find that models with heating from radioactive decay of $^{56}$Ni, or those with only a single component of opacity from $r$-process elements, fail to capture the rapid optical decline and red optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich ejecta provide a good fit to the data, the resulting blue component has $M_mathrm{ej}^mathrm{blue}approx 0.01$ M$_odot$ and $v_mathrm{ej}^mathrm{blue}approx 0.3$c, and the red component has $M_mathrm{ej}^mathrm{red}approx 0.04$ M$_odot$ and $v_mathrm{ej}^mathrm{red}approx 0.1$c. These ejecta masses are broadly consistent with the estimated $r$-process production rate required to explain the Milky Way $r$-process abundances, providing the first evidence that BNS mergers can be a dominant site of $r$-process enrichment.
On 2017 August 17, gravitational waves were detected from a binary neutron star merger, GW170817, along with a coincident short gamma-ray burst, GRB170817A. An optical transient source, Swope Supernova Survey 17a (SSS17a), was subsequently identified as the counterpart of this event. We present ultraviolet, optical and infrared light curves of SSS17a extending from 10.9 hours to 18 days post-merger. We constrain the radioactively-powered transient resulting from the ejection of neutron-rich material. The fast rise of the light curves, subsequent decay, and rapid color evolution are consistent with multiple ejecta components of differing lanthanide abundance. The late-time light curve indicates that SSS17a produced at least ~0.05 solar masses of heavy elements, demonstrating that neutron star mergers play a role in r-process nucleosynthesis in the Universe.
Recent detection of gravitational waves from a neutron star (NS) merger event GW170817 and identification of an electromagnetic counterpart provide a unique opportunity to study the physical processes in NS mergers. To derive properties of ejected ma terial from the NS merger, we perform radiative transfer simulations of kilonova, optical and near-infrared emissions powered by radioactive decays of r-process nuclei synthesized in the merger. We find that the observed near-infrared emission lasting for > 10 days is explained by 0.03 Msun of ejecta containing lanthanide elements. However, the blue optical component observed at the initial phases requires an ejecta component with a relatively high electron fraction (Ye). We show that both optical and near-infrared emissions are simultaneously reproduced by the ejecta with a medium Ye of ~ 0.25. We suggest that a dominant component powering the emission is post-merger ejecta, which exhibits that mass ejection after the first dynamical ejection is quite efficient. Our results indicate that NS mergers synthesize a wide range of r-process elements and strengthen the hypothesis that NS mergers are the origin of r-process elements in the Universe.
We present Hubble Space Telescope and Chandra imaging, combined with Very Large Telescope MUSE integral field spectroscopy of the counterpart and host galaxy of the first binary neutron star merger detected via gravitational wave emission by LIGO & V irgo, GW170817. The host galaxy, NGC 4993, is an S0 galaxy at z=0.009783. There is evidence for large, face-on spiral shells in continuum imaging, and edge-on spiral features visible in nebular emission lines. This suggests that NGC 4993 has undergone a relatively recent (<1 Gyr) ``dry merger. This merger may provide the fuel for a weak active nucleus seen in Chandra imaging. At the location of the counterpart, HST imaging implies there is no globular or young stellar cluster, with a limit of a few thousand solar masses for any young system. The population in the vicinity is predominantly old with <1% of any light arising from a population with ages <500 Myr. Both the host galaxy properties and those of the transient location are consistent with the distributions seen for short-duration gamma-ray bursts, although the source position lies well within the effective radius (r_e ~ 3 kpc), providing an r_e-normalized offset that is closer than ~90% of short GRBs. For the long delay time implied by the stellar population, this suggests that the kick velocity was significantly less than the galaxy escape velocity. We do not see any narrow host galaxy interstellar medium features within the counterpart spectrum, implying low extinction, and that the binary may lie in front of the bulk of the host galaxy.
We present Spitzer Space Telescope 3.6 and 4.5 micron observations of the binary neutron star merger GW170817 at 43, 74, and 264 days post-merger. Using the final observation as a template, we uncover a source at the position of GW170817 at 4.5 micro n with a brightness of 22.9+/-0.3 AB mag at 43 days and 23.8+/-0.3 AB mag at 74 days (the uncertainty is dominated by systematics from the image subtraction); no obvious source is detected at 3.6 micron to a 3-sigma limit of >23.3 AB mag in both epochs. The measured brightness is dimmer by a factor of about 2-3 times compared to our previously published kilonova model, which is based on UV, optical, and near-IR data at <30 days. However, the observed fading rate and color (m_{3.6}-m_{4.5}> 0 AB mag) are consistent with our model. We suggest that the discrepancy is likely due to a transition to the nebular phase, or a reduced thermalization efficiency at such late time. Using the Spitzer data as a guide, we briefly discuss the prospects of observing future binary neutron star mergers with Spitzer (in LIGO/Virgo Observing Run 3) and the James Webb Space Telescope (in LIGO/Virgo Observing Run 4 and beyond).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا