ترغب بنشر مسار تعليمي؟ اضغط هنا

Strongly anisotropic spin relaxation in graphene/transition metal dichalcogenide heterostructures at room temperature

133   0   0.0 ( 0 )
 نشر من قبل Juan F. Sierra
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene has emerged as the foremost material for future two-dimensional spintronics due to its tuneable electronic properties. In graphene, spin information can be transported over long distances and, in principle, be manipulated by using magnetic correlations or large spin-orbit coupling (SOC) induced by proximity effects. In particular, a dramatic SOC enhancement has been predicted when interfacing graphene with a semiconducting transition metal dechalcogenide, such as tungsten disulphide (WS$_2$). Signatures of such an enhancement have recently been reported but the nature of the spin relaxation in these systems remains unknown. Here, we unambiguously demonstrate anisotropic spin dynamics in bilayer heterostructures comprising graphene and WS$_2$. By using out-of-plane spin precession, we show that the spin lifetime is largest when the spins point out of the graphene plane. Moreover, we observe that the spin lifetime varies over one order of magnitude depending on the spin orientation, indicating that the strong spin-valley coupling in WS$_2$ is imprinted in the bilayer and felt by the propagating spins. These findings provide a rich platform to explore coupled spin-valley phenomena and offer novel spin manipulation strategies based on spin relaxation anisotropy in two-dimensional materials.



قيم البحث

اقرأ أيضاً

We report on the first systematic study of spin transport in bilayer graphene (BLG) as a function of mobility, minimum conductivity, charge density and temperature. The spin relaxation time $tau_s$ scales inversely with the mobility $mu$ of BLG sampl es both at room temperature and at low temperature. This indicates the importance of Dyakonov - Perel spin scattering in BLG. Spin relaxation times of up to 2 ns are observed in samples with the lowest mobility. These times are an order of magnitude longer than any values previously reported for single layer graphene (SLG). We discuss the role of intrinsic and extrinsic factors that could lead to the dominance of Dyakonov-Perel spin scattering in BLG. In comparison to SLG, significant changes in the density dependence of $tau_s$ are observed as a function of temperature.
We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenides monolayers. We show that momentum and spin relaxation times due to the exchange interaction by magnetic impurities, are m uch longer when the Fermi level is inside the spin split region of the valence band. In contrast to the spin relaxation, we find that the dependence of Kondo temperature $T_K$ on the doping is not strongly affected by the spin-orbit induced splitting, although only one of the spin species are present at each valley. This result, which is obtained using both perturbation theory and poor mans scaling methods, originates from the intervalley spin-flip scattering in the spin-split region. We further demonstrate the decline in the conductivity with temperatures close to $T_K$ which can vary with the doping. Our findings reveal the qualitative difference with the Kondo physics in conventional metallic systems and other Dirac materials.
Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the non-local geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precess ion under a magnetic field $B$ applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B = 0 and B = 2 T shows a 20 % decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin orbit effective fields in the in-plane and out-of-plane directions.
Proximity effects are one of the pillars of exotic phenomena and technological applications of two dimensional materials. However, the interactions nature depends strongly on the materials involved, their crystalline symmetries, and interfacial prope rties. Here we used large-scale first-principle calculations to demonstrate that strain and twist-angle are efficient knobs to tailor the spin-orbit coupling in graphene transition metal dichalcogenide heterobilayers. We found that by choosing a twist-angle of 30 degrees, the spin relaxation times increase by two orders of magnitude, opening a path to improve these heterostructures spin transport capability. Moreover, we demonstrate that strain and twist angle will modify the relative values of valley-Zeeman and Rashba spin-orbit coupling, allowing to tune the system into an ideal Dirac-Rashba regime. These results enable us to envision an answer for the variability of spin-orbit coupling found in different experiments and have significant consequences for applications that depend on polycrystallinity, where grains form at different orientations.
We compare different methods to measure the anisotropy of the spin-lifetime in graphene. In addition to out-of-plane rotation of the ferromagnetic electrodes and oblique spin precession, we present a Hanle experiment where the electron spins precess around either a magnetic field perpendicular to the graphene plane or around an in-plane field. In the latter case, electrons are subject to both in-plane and out-of-plane spin relaxation. To fit the data, we use a numerical simulation that can calculate precession with anisotropies in the spin-lifetimes under magnetic fields in any direction. Our data show a small, but distinct anisotropy that can be explained by the combined action of isotropic mechanisms, such as relaxation by the contacts and resonant scattering by magnetic impurities, and an anisotropic Rashba spin-orbit based mechanism. We also assess potential sources of error in all three types of experiment and conclude that the in-plane/out-of-plane Hanle method is most reliable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا