ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of topologically protected helical edge modes in Kagome elastic plates

60   0   0.0 ( 0 )
 نشر من قبل Marco Miniaci
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The investigation of topologically protected waves in classical media has opened unique opportunities to achieve exotic properties like one-way phonon transport, protection from backscattering and immunity to imperfections. Contrary to acoustic and electromagnetic domains, their observation in elastic solids has so far been elusive due to the presence of both shear and longitudinal modes and their modal conversion at interfaces and free surfaces. Here we report the experimental observation of topologically protected helical edge waves in elastic media. The considered structure consists of an elastic plate patterned according to a Kagome architecture with an accidental degeneracy of two Dirac cones induced by drilling through holes. The careful breaking of symmetries couples the corresponding elastic modes which effectively emulates spin orbital coupling in the quantum spin Hall effect. The results shed light on the topological properties of the proposed plate waveguide and opens avenues for the practical realization of compact, passive and cost-effective elastic topological waveguides.


قيم البحث

اقرأ أيضاً

90 - K. L. Zhang , Z. Song 2021
Edge states exhibit the nontrivial topology of energy band in the bulk. As localized states at boundaries, many-particle edge states may obey a special symmetry that is broken in the bulk. When local particle-particle interaction is induced, they may support a particular property. We consider an anisotropic two-dimensional Su-Schrieffer-Heeger Hubbard model and examine the appearance of $eta$-pairing edge states. In the absence of Hubbard interaction, the energy band is characterized by topologically invariant polarization in association with edge states. In the presence of on-site Hubbard interaction, $eta$-pairing edge states with an off-diagonal long-range order appear in the nontrivial topological phase, resulting in the condensation of pairs at the boundary. In addition, as Hamiltonian eigenstates, the edge states contain one paired component and one unpaired component. Neither affects the other; they act as two-fluid states. From numerical simulations of many-particle scattering processes, a clear manifestation and experimental detection scheme of topologically protected two-fluid edge states are provided.
114 - Wei Nie , Z. H. Peng , Franco Nori 2019
Exploring the properties and applications of topological quantum states is essential to better understand topological matter. Here, we theoretically study a quasi-one-dimensional topological atom array. In the low-energy regime, the atom array is equ ivalent to a topological superatom. Driving the superatom in a cavity, we study the interaction between light and topological quantum states. We find that the edge states exhibit topology-protected quantum coherence, which can be characterized from the photon transmission. This quantum coherence helps us to find a superradiance-subradiance transition, and we also study its finite-size scaling behavior. The superradiance-subradiance transition also exists in symmetry-breaking systems. More importantly, it is shown that the quantum coherence of the subradiant edge state is robust to random noises, allowing the superatom to work as a topologically protected quantum memory. We suggest a relevant experiment with three-dimensional circuit QED. Our study may have applications in quantum computation and quantum optics based on topological edge states.
We explore Andreev states at the interface of graphene and a superconductor for a uniform pseudo-magnetic field. Near the zeroth-pseudo Landau level, we find a topological transition as a function of applied Zeeman field, at which a gapless helical m ode appears. This 1D mode is protected from backscattering as long as intervalley- and spin-flip scattering are suppressed. We discuss a possible experimental platform to detect this gapless mode based on strained suspended membranes on a superconductor, in which dynamical strain causes charge pumping
In minimally twisted bilayer graphene, a moir{e} pattern consisting of AB and BA stacking regions separated by domain walls forms. These domain walls are predicted to support counterpropogating topologically protected helical (TPH) edge states when t he AB and BA regions are gapped. We fabricate designer moir{e} crystals with wavelengths longer than 50 nm and demonstrate the emergence of TPH states on the domain wall network by scanning tunneling spectroscopy measurements. We observe a double-line profile of the TPH states on the domain walls, only occurring when the AB and BA regions are gapped. Our results demonstrate a practical and flexible method for TPH state network construction.
For most chiralities, semiconducting nanotubes display topologically protected end states of multiple degeneracies. We demonstrate using density matrix renormalization group based quantum chemistry tools that the presence of Coulomb interactions indu ces the formation of robust end spins. These are the close analogues of ferromagnetic edge states emerging in graphene nanoribbons. The interaction between the two ends is sensitive to the length of the nanotube, its dielectric constant, as well as the size of the end spins: for $S=1/2$ end spins their interaction is antiferromagnetic, while for $S>1/2$ it changes from antiferromagnetic to ferromagnetic as the nanotube length increases. The interaction between end spins can be controlled by changing the dielectric constant of the environment, thereby providing a possible platform for two-spin quantum manipulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا