ﻻ يوجد ملخص باللغة العربية
In statistical physics, the challenging combinatorial enumeration of the configurations of a system subject to hard constraints (microcanonical ensemble) is mapped to a mathematically easier calculation where the constraints are softened (canonical ensemble). However, the mapping is exact only when the size of the system is infinite and if the property of ensemble equivalence (EE), i.e. the asymptotic identity of canonical and microcanonical large deviations, holds. For finite systems, or when EE breaks down, statistical physics is currently believed to provide no answer to the combinatorial problem. In contrast with this expectation, here we establish exact relationships connecting conjugate ensembles in full generality, even for finite system size and when EE does not hold. We also show that in the thermodynamic limit the ensembles are directly related through the matrix of canonical (co)variances of the constraints, plus a correction term that survives only if this matrix has an infinite number of finite eigenvalues. These new relationships restore the possibility of enumerating microcanonical configurations via canonical probabilities, thus reconnecting statistical physics and combinatorics in realms where they were believed to be no longer in mutual correspondence.
It is generally believed that, in the thermodynamic limit, the microcanonical description as a function of energy coincides with the canonical description as a function of temperature. However, various examples of systems for which the microcanonical
We investigate the general property of the energy fluctuation for the canonical ensemble in Tsallis statistics and the ensemble equivalence. By taking the ideal gas and the non-interacting harmonic oscillators as examples, we show that, when the part
The framework of non-extensive statistical mechanics, proposed by Tsallis, has been used to describe a variety of systems. The non-extensive statistical mechanics is usually introduced in a formal way, using the maximization of entropy. In this artic
Many questions of fundamental interest in todays science can be formulated as inference problems: Some partial, or noisy, observations are performed over a set of variables and the goal is to recover, or infer, the values of the variables based on th
In a statistical ensemble with $M$ microstates, we introduce an $M times M$ correlation matrix with the correlations between microstates as its elements. Using eigenvectors of the correlation matrix, we can define eigen microstates of the ensemble. T