ترغب بنشر مسار تعليمي؟ اضغط هنا

Lip2AudSpec: Speech reconstruction from silent lip movements video

102   0   0.0 ( 0 )
 نشر من قبل Hassan Akbari
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, we propose a deep neural network for reconstructing intelligible speech from silent lip movement videos. We use auditory spectrogram as spectral representation of speech and its corresponding sound generation method resulting in a more natural sounding reconstructed speech. Our proposed network consists of an autoencoder to extract bottleneck features from the auditory spectrogram which is then used as target to our main lip reading network comprising of CNN, LSTM and fully connected layers. Our experiments show that the autoencoder is able to reconstruct the original auditory spectrogram with a 98% correlation and also improves the quality of reconstructed speech from the main lip reading network. Our model, trained jointly on different speakers is able to extract individual speaker characteristics and gives promising results of reconstructing intelligible speech with superior word recognition accuracy.

قيم البحث

اقرأ أيضاً

Speechreading or lipreading is the technique of understanding and getting phonetic features from a speakers visual features such as movement of lips, face, teeth and tongue. It has a wide range of multimedia applications such as in surveillance, Inte rnet telephony, and as an aid to a person with hearing impairments. However, most of the work in speechreading has been limited to text generation from silent videos. Recently, research has started venturing into generating (audio) speech from silent video sequences but there have been no developments thus far in dealing with divergent views and poses of a speaker. Thus although, we have multiple camera feeds for the speech of a user, but we have failed in using these multiple video feeds for dealing with the different poses. To this end, this paper presents the worlds first ever multi-view speech reading and reconstruction system. This work encompasses the boundaries of multimedia research by putting forth a model which leverages silent video feeds from multiple cameras recording the same subject to generate intelligent speech for a speaker. Initial results confirm the usefulness of exploiting multiple camera views in building an efficient speech reading and reconstruction system. It further shows the optimal placement of cameras which would lead to the maximum intelligibility of speech. Next, it lays out various innovative applications for the proposed system focusing on its potential prodigious impact in not just security arena but in many other multimedia analytics problems.
Cross-modality generation is an emerging topic that aims to synthesize data in one modality based on information in a different modality. In this paper, we consider a task of such: given an arbitrary audio speech and one lip image of arbitrary target identity, generate synthesized lip movements of the target identity saying the speech. To perform well in this task, it inevitably requires a model to not only consider the retention of target identity, photo-realistic of synthesized images, consistency and smoothness of lip images in a sequence, but more importantly, learn the correlations between audio speech and lip movements. To solve the collective problems, we explore the best modeling of the audio-visual correlations in building and training a lip-movement generator network. Specifically, we devise a method to fuse audio and image embeddings to generate multiple lip images at once and propose a novel correlation loss to synchronize lip changes and speech changes. Our final model utilizes a combination of four losses for a comprehensive consideration in generating lip movements; it is trained in an end-to-end fashion and is robust to lip shapes, view angles and different facial characteristics. Thoughtful experiments on three datasets ranging from lab-recorded to lips in-the-wild show that our model significantly outperforms other state-of-the-art methods extended to this task.
294 - Huiyan Li , Haohong Lin , You Wang 2021
Silent Speech Decoding (SSD) based on Surface electromyography (sEMG) has become a prevalent task in recent years. Though revolutions have been proposed to decode sEMG to audio successfully, some problems still remain. In this paper, we propose an op timized sequence-to-sequence (Seq2Seq) approach to synthesize voice from subvocal sEMG. Both subvocal and vocal sEMG are collected and preprocessed to provide data information. Then, we extract durations from the alignment between subvocal and vocal signals to regulate the subvocal sEMG following audio length. Besides, we use phoneme classification and vocal sEMG reconstruction modules to improve the model performance. Finally, experiments on a Mandarin speaker dataset, which consists of 6.49 hours of data, demonstrate that the proposed model improves the mapping accuracy and voice quality of reconstructed voice.
Sound waves cause small vibrations in nearby objects. A few techniques exist in the literature that can extract sound from video. In this paper we study local vibration patterns at different image locations. We show that different locations in the im age vibrate differently. We carefully aggregate local vibrations and produce a sound quality that improves state-of-the-art. We show that local vibrations could have a time delay because sound waves take time to travel through the air. We use this phenomenon to estimate sound direction. We also present a novel algorithm that speeds up sound extraction by two to three orders of magnitude and reaches real-time performance in a 20KHz video.
129 - Chenhao Wang 2019
Lip-reading aims to recognize speech content from videos via visual analysis of speakers lip movements. This is a challenging task due to the existence of homophemes-words which involve identical or highly similar lip movements, as well as diverse li p appearances and motion patterns among the speakers. To address these challenges, we propose a novel lip-reading model which captures not only the nuance between words but also styles of different speakers, by a multi-grained spatio-temporal modeling of the speaking process. Specifically, we first extract both frame-level fine-grained features and short-term medium-grained features by the visual front-end, which are then combined to obtain discriminative representations for words with similar phonemes. Next, a bidirectional ConvLSTM augmented with temporal attention aggregates spatio-temporal information in the entire input sequence, which is expected to be able to capture the coarse-gained patterns of each word and robust to various conditions in speaker identity, lighting conditions, and so on. By making full use of the information from different levels in a unified framework, the model is not only able to distinguish words with similar pronunciations, but also becomes robust to appearance changes. We evaluate our method on two challenging word-level lip-reading benchmarks and show the effectiveness of the proposed method, which also demonstrate the above claims.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا