ترغب بنشر مسار تعليمي؟ اضغط هنا

Looking for Hall attractor in astrophysical sources

203   0   0.0 ( 0 )
 نشر من قبل Sergei Popov B.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.B. Popov




اسأل ChatGPT حول البحث

Recently, numerical calculations of the magnetic field evolution in neutron stars demonstrated the possible existence of a Hall attractor, a stage at which the evolution of the field driven by the Hall cascade ends. The existence of such a stage in neutron star magnetic evolution is very important, and can be potentially probed by observations. Here we discuss three types of objects which could have reached this stage. First, we briefly describe the evolution of normal radio pulsars with ages about a few hundred thousand years. Then we analyse in more detail observations of RX J1856.5-3754, one of the Magnificent Seven, focusing on the surface temperature distribution and comparing model predictions with the temperature map inferred from X-ray observations. Finally, we discuss the necessity of the Hall attractor stage to explain the hypothetical existence of accreting magnetars. We conclude that at the moment there is no direct confirmation of the Hall attractor stage in known sources. However, more detailed observations in the near future can demonstrate existence (or absence) of this stage of the crustal magnetic field evolution.

قيم البحث

اقرأ أيضاً

63 - A.P. Igoshev 2018
In this note we propose that recently discovered radio pulsar J0250+5854 with 23.5 sec spin period is presently at the Hall attractor stage. This can explain low temperature and absence of magnetar-like activity of this source together with its spin period and period derivative. We present results of calculations of the evolution of this source in a simple model of magnetic field decay. The neutron star could start its evolution as a magnetar with initial field $sim 10^{14}-10^{15}$ G for realistic range of parameter $Q$ describing crust imperfections. Future measurements of surface temperature and age of this neutron star might help to probe this hypothesis.
The IceCube neutrino observatory has established the existence of a flux of high-energy astrophysical neutrinos inconsistent with the expectation from atmospheric backgrounds at a significance greater than $5sigma$. This flux has been observed in ana lyses of both track events from muon neutrino interactions and cascade events from interactions of all neutrino flavors. Searches for astrophysical neutrino sources have focused on track events due to the significantly better angular resolution of track reconstructions. To date, no such sources have been confirmed. Here we present the first search for astrophysical neutrino sources using cascades interacting in IceCube with deposited energies as small as 1 TeV. No significant clustering was observed in a selection of 263 cascades collected from May 2010 to May 2012. We show that compared to the classic approach using tracks, this statistically-independent search offers improved sensitivity to sources in the southern sky, especially if the emission is spatially extended or follows a soft energy spectrum. This enhancement is due to the low background from atmospheric neutrinos forming cascade events and the additional veto of atmospheric neutrinos at declinations $lesssim-30^circ$.
High-energy neutrino emission has been predicted for several short-lived astrophysical transients including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets and neutron star mergers. IceCubes optical and X-ray follow-up program sear ches for such transient sources by looking for two or more muon neutrino candidates in directional coincidence and arriving within 100s. The measured rate of neutrino alerts is consistent with the expected rate of chance coincidences of atmospheric background events and no likely electromagnetic counterparts have been identified in Swift follow-up observations. Here, we calculate generic bounds on the neutrino flux of short-lived transient sources. Assuming an $E^{-2.5}$ neutrino spectrum, we find that the neutrino flux of rare sources, like long gamma-ray bursts, is constrained to <5% of the detected astrophysical flux and the energy released in neutrinos (100GeV to 10PeV) by a median bright GRB-like source is $<10^{52.5}$erg. For a harder $E^{-2.13}$ neutrino spectrum up to 30% of the flux could be produced by GRBs and the allowed median source energy is $< 10^{52}$erg. A hypothetical population of transient sources has to be more common than $10^{-5}text{Mpc}^{-3}text{yr}^{-1}$ ($5times10^{-8}text{Mpc}^{-3}text{yr}^{-1}$ for the $E^{-2.13}$ spectrum) to account for the complete astrophysical neutrino flux.
Early results of the search for E_gamma>1 PeV cosmic photons from point sources with the data of Carpet-2, an air-shower array equipped with a 175 m^2 muon detector, are presented. They include 95% CL upper limits on PeV photon fluxes from stacked di rections of high-energy IceCube neutrino events and from four predefined sources, Crab, Cyg X-3, Mrk 421 and Mrk 501. An insignificant excess of events from Mrk 421 will be further monitored. Prospects of the use of the upgraded installation, Carpet-3 (410 m^2 muon detector), scheduled to start data taking in 2019, for searches of E_gamma>100 TeV photons, are briefly discussed.
Low background searches for astrophysical neutrino sources anywhere in the sky can be performed using cascade events induced by neutrinos of all flavors interacting in IceCube with energies as low as ~1 TeV. Previously, we showed that even with just two years of data, the resulting sensitivity to sources in the southern sky is competitive with IceCube and ANTARES analyses using muon tracks induced by charge current muon neutrino interactions - especially if the neutrino emission follows a soft energy spectrum or originates from an extended angular region. Here, we extend that work by adding five more years of data, significantly improving the cascade angular resolution, and including tests for point-like or diffuse Galactic emission to which this dataset is particularly well-suited. For many of the signal candidates considered, this analysis is the most sensitive of any experiment. No significant clustering was observed, and thus many of the resulting constraints are the most stringent to date. In this paper we will describe the improvements introduced in this analysis and discuss our results in the context of other recent work in neutrino astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا