ﻻ يوجد ملخص باللغة العربية
A dissipative stochastic sandpile model is constructed on one and two dimensional small-world networks with different shortcut densities $phi$ where $phi=0$ and $1$ represent a regular lattice and a random network respectively. In the small-world regime ($2^{-12} le phi le 0.1$), the critical behaviour of the model is explored studying different geometrical properties of the avalanches as a function of avalanche size $s$. For both the dimensions, three regions of $s$, separated by two crossover sizes $s_1$ and $s_2$ ($s_1<s_2$), are identified analyzing the scaling behaviour of average height and area of the toppling surface associated with an avalanche. It is found that avalanches of size $s<s_1$ are compact and follow Manna scaling on the regular lattice whereas the avalanches with size $s>s_1$ are sparse as they are on network and follow mean-field scaling. Coexistence of different scaling forms in the small-world regime leads to violation of usual finite-size scaling, in contrary to the fact that the model follows the same on the regular lattice as well as on the random network independently. Simultaneous appearance of multiple scaling forms are characterized by developing a coexistence scaling theory. As SWN evolves from regular lattice to random network, a crossover from diffusive to super-diffusive nature of sand transport is observed and scaling forms of such crossover is developed and verified.
A dissipative sandpile model (DSM) is constructed and studied on small world networks (SWN). SWNs are generated adding extra links between two arbitrary sites of a two dimensional square lattice with different shortcut densities $phi$. Three differen
A dissipative stochastic sandpile model is constructed and studied on small world networks in one and two dimensions with different shortcut densities $phi$, where $phi=0$ represents regular lattice and $phi=1$ represents random network. The effect o
In the rotational sandpile model, either the clockwise or the anti-clockwise toppling rule is assigned to all the lattice sites. It has all the features of a stochastic sandpile model but belongs to a different universality class than the Manna class
We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point re
In this paper we analyze the effect of a non-trivial topology on the dynamics of the so-called Naming Game, a recently introduced model which addresses the issue of how shared conventions emerge spontaneously in a population of agents. We consider in