ﻻ يوجد ملخص باللغة العربية
Convective core overshooting has a strong influence on the evolution of stars of moderate and high mass. Studies of double-lined eclipsing binaries and stellar oscillations have renewed interest in the possible dependence of overshooting on stellar mass, which has been poorly constrained by observations so far. Here we have used a sample of 29 well-studied double-lined eclipsing binaries in key locations of the H-R diagram to establish the explicit dependence of f(ov) on mass, where f(ov) is the free parameter in the diffusive approximation to overshooting. Measurements of the masses, radii, and temperatures of the binary components were compared against stellar evolution calculations based on the MESA code to infer semi-empirical values of f(ov) for each component. We find a clear mass dependence such that f(ov) rises sharply from zero in the range 1.2--2.0 solar masses, and levels off thereafter up to the 4.4 solar mass limit of our sample. Tests with two different element mixtures indicate the trend is the same, and we find it is also qualitatively similar to the one established in our previous study with the classical step-function implementation of overshooting characterized by the free parameter alpha(ov). Based on these measurements we infer an approximate relationship between the two overshooting parameters of alpha(ov)/f(ov) = 11.36 +/- 0.22, with a possible dependence on stellar properties.
Convective core overshooting extends the main-sequence lifetime of a star. Evolutionary tracks computed with overshooting are quite different from those that use the classical Schwarzschild criterion, which leads to rather different predictions for t
Overshooting from the convective cores of stars more massive than about 1.2 M(Sun) has a profound impact on their subsequent evolution. And yet, the formulation of the overshooting mechanism in current stellar evolution models has a free parameter (f
Many current stellar evolution models assume some dependence of the strength of convective core overshooting on mass for stars more massive than 1.1-1.2 solar masses, but the adopted shapes for that relation have remained somewhat arbitrary for lack
Classical Cepheids are powerful probes of both stellar evolution and near-field cosmology thanks to their high luminosities, pulsations, and that they follow the Leavitt (Period-Luminosity) Law. However, there still exist a number of questions regard
As part of a larger program aimed at better quantifying the uncertainties in stellar computations, we attempt to calibrate the extent of convective overshooting in low to intermediate mass stars by means of eclipsing binary systems. We model 12 such