ﻻ يوجد ملخص باللغة العربية
We study periodically driven Taylor-Couette turbulence, i.e. the flow confined between two concentric, independently rotating cylinders. Here, the inner cylinder is driven sinusoidally while the outer cylinder is kept at rest (time-averaged Reynolds number is $Re_i = 5 times 10^5$). Using particle image velocimetry (PIV), we measure the velocity over a wide range of modulation periods, corresponding to a change in Womersley number in the range $15 leq Wo leq 114$. To understand how the flow responds to a given modulation, we calculate the phase delay and amplitude response of the azimuthal velocity. In agreement with earlier theoretical and numerical work, we find that for large modulation periods the system follows the given modulation of the driving, i.e. the system behaves quasi-stationary. For smaller modulation periods, the flow cannot follow the modulation, and the flow velocity responds with a phase delay and a smaller amplitude response to the given modulation. If we compare our results with numerical and theoretical results for the laminar case, we find that the scalings of the phase delay and the amplitude response are similar. However, the local response in the bulk of the flow is independent of the distance to the modulated boundary. Apparently, the turbulent mixing is strong enough to prevent the flow from having radius-dependent responses to the given modulation.
Recent studies have brought into question the view that at sufficiently high Reynolds number turbulence is an asymptotic state. We present the first direct observation of the decay of turbulent states in Taylor-Couette flow with lifetimes spanning fi
We create a highly controlled lab environment-accessible to both global and local monitoring-to analyse turbulent boiling flows and in particular their shear stress in a statistically stationary state. Namely, by precisely monitoring the drag of stro
We report the onset of elastic turbulence in a two-dimensional Taylor-Couette geometry using numerical solutions of the Oldroyd-B model, also performed at high Weissenberg numbers with the program OpenFOAM. Beyond a critical Weissenberg number, an el
Highly turbulent Taylor-Couette flow with spanwise-varying roughness is investigated experimentally and numerically (direct numerical simulations (DNS) with an immersed boundary method (IBM)) to determine the effects of the spacing and axial width $s
In this study we experimentally investigate bubbly drag reduction in a highly turbulent flow of water with dispersed air at $5.0 times 10^{5} leq text{Re} leq 1.7 times 10^{6}$ over a non-wetting surface containing micro-scale roughness. To do so, th