ﻻ يوجد ملخص باللغة العربية
In this paper, a practical coding scheme is designed for the binary Wyner-Ziv (WZ) problem by using nested low-density generator-matrix (LDGM) and low-density parity-check (LDPC) codes. This scheme contains two steps in the encoding procedure. The first step involves applying the binary quantization by employing LDGM codes and the second one is using the syndrome-coding technique by utilizing LDPC codes. The decoding algorithm of the proposed scheme is based on the Sum-Product (SP) algorithm with the help of a side information available at the decoder side. It is theoretically shown that the compound structure has the capability of achieving the WZ bound. The proposed method approaches this bound by utilizing the iterative message-passing algorithms in both encoding and decoding, although theoretical results show that it is asymptotically achievable.
The $L$-link binary Chief Executive Officer (CEO) problem under logarithmic loss is investigated in this paper. A quantization splitting technique is applied to convert the problem under consideration to a $(2L-1)$-step successive Wyner-Ziv (WZ) prob
An $l$-link binary CEO problem is considered in this paper. We present a practical encoding and decoding scheme for this problem employing the graph-based codes. A successive coding scheme is proposed for converting an $l$-link binary CEO problem to
The combination of source coding with decoder side-information (Wyner-Ziv problem) and channel coding with encoder side-information (Gelfand-Pinsker problem) can be optimally solved using the separation principle. In this work we show an alternative
This work addresses the physical layer channel code design for an uncoordinated, frame- and slot-asynchronous random access protocol. Starting from the observation that collisions between two users yield very specific interference patterns, we define
A popular method of improving the throughput of blockchain systems is by running smaller side blockchains that push the hashes of their blocks onto a trusted blockchain. Side blockchains are vulnerable to stalling attacks where a side blockchain node