ﻻ يوجد ملخص باللغة العربية
Visual speech recognition is a challenging research problem with a particular practical application of aiding audio speech recognition in noisy scenarios. Multiple camera setups can be beneficial for the visual speech recognition systems in terms of improved performance and robustness. In this paper, we explore this aspect and provide a comprehensive study on combining multiple views for visual speech recognition. The thorough analysis covers fusion of all possible view angle combinations both at feature level and decision level. The employed visual speech recognition system in this study extracts features through a PCA-based convolutional neural network, followed by an LSTM network. Finally, these features are processed in a tandem system, being fed into a GMM-HMM scheme. The decision fusion acts after this point by combining the Viterbi path log-likelihoods. The results show that the complementary information contained in recordings from different view angles improves the results significantly. For example, the sentence correctness on the test set is increased from 76% for the highest performing single view ($30^circ$) to up to 83% when combining this view with the frontal and $60^circ$ view angles.
In this project, we worked on speech recognition, specifically predicting individual words based on both the video frames and audio. Empowered by convolutional neural networks, the recent speech recognition and lip reading models are comparable to hu
Visual keyword spotting (KWS) is the problem of estimating whether a text query occurs in a given recording using only video information. This paper focuses on visual KWS for words unseen during training, a real-world, practical setting which so far
In this paper, we propose a novel Convolutional Neural Network (CNN) architecture for learning multi-scale feature representations with good tradeoffs between speed and accuracy. This is achieved by using a multi-branch network, which has different c
We present BoTNet, a conceptually simple yet powerful backbone architecture that incorporates self-attention for multiple computer vision tasks including image classification, object detection and instance segmentation. By just replacing the spatial
We present a conceptually simple but effective funnel activation for image recognition tasks, called Funnel activation (FReLU), that extends ReLU and PReLU to a 2D activation by adding a negligible overhead of spatial condition. The forms of ReLU and