ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping for accessibility: A case study of ethics in data science for social good

140   0   0.0 ( 0 )
 نشر من قبل Anissa Tanweer
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Anissa Tanweer




اسأل ChatGPT حول البحث

Ethics in the emerging world of data science are often discussed through cautionary tales about the dire consequences of missteps taken by high profile companies or organizations. We take a different approach by foregrounding the ways that ethics are implicated in the day-to-day work of data science, focusing on instances in which data scientists recognize, grapple with, and conscientiously respond to ethical challenges. This paper presents a case study of ethical dilemmas that arose in a data science for social good (DSSG) project focused on improving navigation for people with limited mobility. We describe how this particular DSSG team responded to those dilemmas, and how those responses gave rise to still more dilemmas. While the details of the case discussed here are unique, the ethical dilemmas they illuminate can commonly be found across many DSSG projects. These include: the risk of exacerbating disparities; the thorniness of algorithmic accountability; the evolving opportunities for mischief presented by new technologies; the subjective and value- laden interpretations at the heart of any data-intensive project; the potential for data to amplify or mute particular voices; the possibility of privacy violations; and the folly of technological solutionism. Based on our tracing of the teams responses to these dilemmas, we distill lessons for an ethical data science practice that can be more generally applied across DSSG projects. Specifically, this case experience highlights the importance of: 1) Setting the scene early on for ethical thinking 2) Recognizing ethical decision-making as an emergent phenomenon intertwined with the quotidian work of data science for social good 3) Approaching ethical thinking as a thoughtful and intentional balancing of priorities rather than a binary differentiation between right and wrong.



قيم البحث

اقرأ أيضاً

Forecasting plays a critical role in the development of organisational business strategies. Despite a considerable body of research in the area of forecasting, the focus has largely been on the financial and economic outcomes of the forecasting proce ss as opposed to societal benefits. Our motivation in this study is to promote the latter, with a view to using the forecasting process to advance social and environmental objectives such as equality, social justice and sustainability. We refer to such forecasting practices as Forecasting for Social Good (FSG) where the benefits to society and the environment take precedence over economic and financial outcomes. We conceptualise FSG and discuss its scope and boundaries in the context of the Doughnut theory. We present some key attributes that qualify a forecasting process as FSG: it is concerned with a real problem, it is focused on advancing social and environmental goals and prioritises these over conventional measures of economic success, and it has a broad societal impact. We also position FSG in the wider literature on forecasting and social good practices. We propose an FSG maturity framework as the means to engage academics and practitioners with research in this area. Finally, we highlight that FSG: (i) cannot be distilled to a prescriptive set of guidelines, (ii) is scalable, and (iii) has the potential to make significant contributions to advancing social objectives.
As the amount of scientific data continues to grow at ever faster rates, the research community is increasingly in need of flexible computational infrastructure that can support the entirety of the data science lifecycle, including long-term data sto rage, data exploration and discovery services, and compute capabilities to support data analysis and re-analysis, as new data are added and as scientific pipelines are refined. We describe our experience developing data commons-- interoperable infrastructure that co-locates data, storage, and compute with common analysis tools--and present several cases studies. Across these case studies, several common requirements emerge, including the need for persistent digital identifier and metadata services, APIs, data portability, pay for compute capabilities, and data peering agreements between data commons. Though many challenges, including sustainability and developing appropriate standards remain, interoperable data commons bring us one step closer to effective Data Science as Service for the scientific research community.
Research at the intersection of machine learning and the social sciences has provided critical new insights into social behavior. At the same time, a variety of critiques have been raised ranging from technical issues with the data used and features constructed, problematic assumptions built into models, their limited interpretability, and their contribution to bias and inequality. We argue such issues arise primarily because of the lack of social theory at various stages of the model building and analysis. In the first half of this paper, we walk through how social theory can be used to answer the basic methodological and interpretive questions that arise at each stage of the machine learning pipeline. In the second half, we show how theory can be used to assess and compare the quality of different social learning models, including interpreting, generalizing, and assessing the fairness of models. We believe this paper can act as a guide for computer and social scientists alike to navigate the substantive questions involved in applying the tools of machine learning to social data.
We describe an ecosystem for teaching data science (DS) to engineers which blends theory, methods, and applications, developed at the Faculty of Physical and Mathematical Sciences, Universidad de Chile, over the last three years. This initiative has been motivated by the increasing demand for DS qualifications both from academic and professional environments. The ecosystem is distributed in a collaborative fashion across three departments in the above Faculty and includes postgraduate programmes, courses, professional diplomas, data repositories, laboratories, trainee programmes, and internships. By sharing our teaching principles and the innovative components of our approach to teaching DS, we hope our experience can be useful to those developing their own DS programmes and ecosystems. The open challenges and future plans for our ecosystem are also discussed at the end of the article.
Pedestrian accessibility is an important factor in urban transport and land use policy and critical for creating healthy, sustainable cities. Developing and evaluating indicators measuring inequalities in pedestrian accessibility can help planners an d policymakers benchmark and monitor the progress of city planning interventions. However, measuring and assessing indicators of urban design and transport features at high resolution worldwide to enable city comparisons is challenging due to limited availability of official, high quality, and comparable spatial data, as well as spatial analysis tools offering customizable frameworks for indicator construction and analysis. To address these challenges, this study develops an open source software framework to construct pedestrian accessibility indicators for cities using open and consistent data. It presents a generalized method to consistently measure pedestrian accessibility at high resolution and spatially aggregated scale, to allow for both within- and between-city analyses. The open source and open data methods developed in this study can be extended to other cities worldwide to support local planning and policymaking. The software is made publicly available for reuse in an open repository.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا