ﻻ يوجد ملخص باللغة العربية
Aims. We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar cycle prediction by the surface flux transport (SFT) model. Methods. We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox Solar Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI). We also use the surface flux transport model for the interpretation and prediction of the observed axial dipole moment. Results. We find that the observed axial dipole moment becomes approximately constant during the period of several years before each cycle minimum, which we call the axial dipole moment plateau. The cross-equatorial magnetic flux transport is found to be small during the period, although the significant number of sunspots are still emerging. The results indicates that the newly emerged magnetic flux does not contributes to the build up of the axial dipole moment near the end of each cycle. This is confirmed by showing that the time variation of the observed axial dipole moment agrees well with that predicted by the SFT model without introducing new emergence of magnetic flux. These results allows us to predict the axial dipole moment in Cycle 24/25 minimum using the SFT model without introducing new flux emergence. The predicted axial dipole moment of Cycle 24/25 minimum is 60--80 percent of Cycle 23/24 minimum, which suggests the amplitude of Cycle 25 even weaker than the current Cycle 24. Conclusions. The plateau of the solar axial dipole moment is an important feature for the longer prediction of the solar cycle based on the SFT model.
A review of solar cycle prediction methods and their performance is given, including forecasts for cycle 24 and focusing on aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review is further restric
A review of solar cycle prediction methods and their performance is given, including early forecasts for cycle 25. The review focuses on those aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review
Solar activity cycle varies in amplitude. The last Cycle 24 is the weakest in the past century. Suns activity dominates Earths space environment. The frequency and intensity of the Suns activity are accordant with the solar cycle. Hence there are pra
Solar activity forecasting is an important topic for numerous scientific and technological areas, such as space mission operations, electric power transmission lines, power transformation stations and earth geophysical and climatic impact. Neverthele
We discuss the potential use of an algebraic method to compute the value of the solar axial dipole moment at solar minimum, widely considered to be the most reliable precursor of the activity level in the next solar cycle. The method consists of summ