ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the usual linear regression model in the case where the error process is assumed strictly stationary. We use a result from Hannan, who proved a Central Limit Theorem for the usual least squares estimator under general conditions on the design and on the error process. We show that for a large class of designs, the asymptotic covariance matrix is as simple as the independent and identically distributed case. We then estimate the covariance matrix using an estimator of the spectral density whose consistency is proved under very mild conditions.
We study the performance of the Least Squares Estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$-th moment ($pgeq 1$). In such a heavy-tailed regression setting, we s
We study the asymptotic properties of the SCAD-penalized least squares estimator in sparse, high-dimensional, linear regression models when the number of covariates may increase with the sample size. We are particularly interested in the use of this
The asymptotic optimality (a.o.) of various hyper-parameter estimators with different optimality criteria has been studied in the literature for regularized least squares regression problems. The estimators include e.g., the maximum (marginal) likeli
The paper continues the authors work on the adaptive Wynn algorithm in a nonlinear regression model. In the present paper it is shown that if the mean response function satisfies a condition of `saturated identifiability, which was introduced by Pron
For the class of Gauss-Markov processes we study the problem of asymptotic equivalence of the nonparametric regression model with errors given by the increments of the process and the continuous time model, where a whole path of a sum of a determinis