ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct visualization of vortex ice in a nanostructured superconductor

77   0   0.0 ( 0 )
 نشر من قبل Junyi Ge
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Artificial ice systems have unique physical properties promising for potential applications. One of the most challenging issues in this field is to find novel ice systems that allows a precise control over the geometries and many-body interactions. Superconducting vortex matter has been proposed as a very suitable candidate to study artificial ice, mainly due to availability of tunable vortex-vortex interactions and the possibility to fabricate a variety of nanoscale pinning potential geometries. So far, a detailed imaging of the local configurations in a vortex-based artificial ice system is still lacking. Here we present a direct visualization of the vortex ice state in a nanostructured superconductor. By using the scanning Hall probe microscopy, a large area with the vortex ice ground state configuration has been detected, which confirms the recent theoretical predictions for this new ice system. Besides the defects analogous to artificial spin ice systems, other types of defects have been visualized and identified. We also demonstrate the possibility to realize different types of defects by varying the magnetic field.



قيم البحث

اقرأ أيضاً

Neutron scattering, a.c. magnetic susceptibility and specific heat studies have been carried out on polycrystalline Dy2Zr2O7. Unlike the pyrochlore spin ice Dy2Ti2O7, Dy2Zr2O7 crystallizes into the fluorite structure and the magnetic Dy3+ moments ran domly reside on the corner-sharing tetrahedral sublattice with non-magnetic Zr ions. Antiferromagnetic spin correlations develop below 10 K but remain dynamic down to 40 mK. These correlations extend over the length of two tetrahedra edges and grow to 6 nearest neighbors with the application of a 20 kOe magnetic field. No Paulings residual entropy was observed and by 8 K the full entropy expected for a two level system is released. We propose that the disorder melts the spin ice state seen in the chemically ordered Dy2Ti2O7 compound, but the spins remain dynamic in a disordered, liquid-like state and do not freeze into a glass-like state that one might intuitively expect.
In spin ice research, small variations in structure or interactions drive a multitude of different behaviors, yet the collection of known materials relies heavily on the `227 pyrochlore structure. Here, we present thermodynamic, structural and inelas tic neutron scattering data on a new spin-ice material, MgEr$_2$Se$_4$, which contributes to the relatively under-explored family of rare-earth spinel chalcogenides. X-ray and neutron diffraction confirm a normal spinel structure, and places Er$^{3+}$ moments on an ideal pyrochlore sublattice. Measurement of crystal electric field excitations with inelastic neutron scattering confirms that the moments have perfect Ising character, and further identifies the ground state Kramers doublet as having dipolar-octupolar form with a significant multipolar character. Heat capacity and magnetic neutron diffuse scattering have ice-like features, but are inconsistent with Monte Carlo simulations of the nearest-neighbor and next-nearest-neighbor dipolar spin-ice (DSI) models. A significant remnant entropy is observed as $Trightarrow0$~K, but again falls short of the full Pauling expectation for DSI, unless significant disorder is added. We show that these observations are fully in-line with what is recently reported for CdEr$_2$Se$_4$, and point to the importance of quantum fluctuations in these materials.
The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates= materials remains heavily debated. Effective low energy single-band models of the copper-oxygen orbitals are widely used because there exists no strong experi mental evidence supporting multiband structures. Here we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital ($d_{x^2-y^2}$ and $d_{z^2}$) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity.
In several strongly correlated electron systems, defects, charge and local lattice distortions are found to show complex inhomogeneous spatial distributions. There is growing evidence that such inhomogeneity plays a fundamental role in unique functio nality of quantum complex materials. La1.72Sr0.28NiO4 is a prototypical strongly correlated material showing spin striped order associated with lattice and charge modulations. In this work we present the spatial distribution of the spin organization by applying micro X-ray diffraction to La1.72Sr0.28NiO4, mapping the spin-density-wave order below the 120K onset temperature. We find that the spin-density-wave order shows the formation of nanoscale puddles with large spatial fluctuations. The nano-puddle density changes on the microscopic scale forming a multiscale phase separation extending from nanoscale to micron scale with scale-free distribution. Indeed spin-density-wave striped puddles are disconnected by spatial regions with different stripe orientation or negligible spin-density-wave order. The present work highlights the complex nanoscale phase separation of spin stripes in nickelate perovskites and opens the question of the energetics at domain interfaces
The upper critical field Hc2 is a fundamental measure of the pairing strength, yet there is no agreement on its magnitude and doping dependence in cuprate superconductors. We have used thermal conductivity as a direct probe of Hc2 in the cuprates YBa 2Cu3Oy and YBa2Cu4O8 to show that there is no vortex liquid at T = 0, allowing us to use high-field resistivity measurements to map out the doping dependence of Hc2 across the phase diagram. Hc2(p) exhibits two peaks, each located at a critical point where the Fermi surface undergoes a transformation. The condensation energy obtained directly from Hc2, and previous Hc1 data, undergoes a 20-fold collapse below the higher critical point. These data provide quantitative information on the impact of competing phases in suppressing superconductivity in cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا