ﻻ يوجد ملخص باللغة العربية
Four-dimensional N = 2 superconformal quantum field theories contain a subsector carrying the structure of a chiral algebra. Using localization techniques, we show for the free hypermultiplet that this structure can be accessed directly from the path integral on the four-sphere. We extend the localization computation to include supersymmetric surface defects described by a generic 4d/2d coupled system. The presence of a defect corresponds to considering a module of the chiral algebra: our results provide a calculational window into its structure constants.
We study the 2D vertex operator algebra (VOA) construction in 4D $mathcal{N}=2$ superconformal field theories (SCFT) on $S^3 times S^1$, focusing both on old puzzles as well as new observations. The VOA lives on a two-torus $mathbb{T}^2subset S^3time
We study half-BPS surface operators in supersymmetric gauge theories in four and five dimensions following two different approaches. In the first approach we analyze the chiral ring equations for certain quiver theories in two and three dimensions, c
In this note, using Nekrasovs gauge origami framework, we study two differe
We initiate the study of intersecting surface operators/defects in four-dimensional quantum field theories (QFTs). We characterize these defects by coupled 4d/2d/0d theories constructed by coupling the degrees of freedom localized at a point and on i
We analyze intersecting surface defects inserted in interacting four-dimensional N = 2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared fixed points of renormalization group flows from larger