ﻻ يوجد ملخص باللغة العربية
In the first two papers of this series, we characterized the structure of maximally random jammed (MRJ) sphere packings across length scales by computing a variety of different correlation functions, spectral functions, hole probabilities, and local density fluctuations. From the remarkable structural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical properties can be expected. Here, we employ these structural descriptors to estimate effective transport and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical approximation formulas. These property formulas include interfacial bounds as well as universal scaling laws for the mean survival time and the fluid permeability. We also estimate the principal relaxation time associated with Brownian motion among perfectly absorbing traps. For the propagation of electromagnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres within a matrix of another dielectric material forms, to a very good approximation, a dissipationless disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium hard-sphere packings, and lattices of hard spheres. Moreover, we generalize results to micro- and macroscopically anisotropic packings of spheroids with tensorial effective properties. The analytic bounds predict the qualitative trend in the physical properties associated with these structures, which provides guidance to more time-consuming simulations and experiments. They especially provide impetus for experiments to design materials with unique bulk properties resulting from hyperuniformity, including structural-color and color-sensing applications.
We review the recent advances on exact results for dynamical correlation functions at large scales and related transport coefficients in interacting integrable models. We discuss Drude weights, conductivity and diffusion constants, as well as linear
More than 30 years ago Edwards and co-authors proposed a model to describe the statistics of granular packings by an ensemble of equiprobable jammed states. Experimental tests of this model remained scarce so far. We introduce a simple system to anal
An overview of some analytical approaches to the computation of the structural and thermodynamic properties of single component and multicomponent hard-sphere fluids is provided. For the structural properties, they yield a thermodynamically consisten
We measure the two-point correlation of free Voronoi volumes in binary disc packings, where the packing fraction $phi_{rm avg}$ ranges from 0.8175 to 0.8380. We observe short-ranged correlations over the whole range of $phi_{rm avg}$ and anti-correla
The impacts of granular jets for both frictional and frictionless grains in two dimensions are numerically investigated. A dense flow with a dead zone emerges during the impact. From our two-dimensional simulation, we evaluate the equations of state