ﻻ يوجد ملخص باللغة العربية
We discuss constraints on cosmic reionisation and their implications on a cosmic SFR density $rho_mathrm{SFR}$ model; we study the influence of key-parameters such as the clumping factor of ionised hydrogen in the intergalactic medium (IGM) $C_{H_{II}}$ and the fraction of ionising photons escaping star-forming galaxies to reionise the IGM $f_mathrm{esc}$. Our analysis uses SFR history data coming from luminosity functions, assuming that star-forming galaxies were sufficient to lead the reionisation process at high redshift. We add two other sets of constraints: measurements of the IGM ionised fraction and the most recent result from Planck Satellite about the integrated Thomson optical depth of the Cosmic Microwave Background (CMB) $tau_mathrm{Planck}$. We also consider various possibilities for the evolution of these two parameters with redshift, and confront them with observational data cited above. We conclude that, if the model of a constant clumping factor is chosen, the fiducial value of $3$ often used in papers is consistent with observations; even if a redshift-dependent model is considered, the resulting optical depth is strongly correlated to $C_{H_{II}}$ mean value at $z>7$, an additional argument in favour of the use of a constant clumping factor. Besides, the escape fraction is related to too many astrophysical parameters to allow us to use a complete and fully satisfactory model. A constant value with redshift seems again to be the most likely expression: considering it as a fit parameter, we get from the maximum likelihood (ML) model $f_mathrm{esc}=0.24pm0.08$; with a redshift-dependent model, we find an almost constant evolution, slightly increasing with $z$, around $f_mathrm{esc}=0.23$. Last, our analysis shows that a reionisation beginning as early as $zgeq14$ and persisting until $zsim6$ is a likely storyline.
Data from Type Ia supernovae, along with X-ray cluster estimates of the universal baryon fraction and Big Bang Nucleosynthesis (BBN) determinations of the baryon-to-photon ratio, are used to provide estimates of several global cosmological parameters
In a broad class of dark energy models, the universe may collapse within a finite time t_c. Here we study a representative model of dark energy with a linear potential, V(phi)=V_0(1+alphaphi). This model is the simplest doomsday model, in which the u
We constrain X-ray spectral shapes for the ensemble of AGN based on the shape of the Cosmic X-ray Background (CXB). Specifically, we rule out regions of X-ray spectral parameter space that do not reproduce the CXB in the energy range 1-100 keV. The k
Revealing the cosmic reionisation history is at the frontier of extragalactic astronomy. The power spectrum of the cosmic microwave background (CMB) polarisation can be used to constrain the reionisation history. Here we propose a CMB-independent met
Gravitational waves (GWs) are one of the key signatures of cosmic strings. If GWs from cosmic strings are detected in future experiments, not only their existence can be confirmed but also their properties might be probed. In this paper, we study the