ترغب بنشر مسار تعليمي؟ اضغط هنا

Building a Web-Scale Dependency-Parsed Corpus from CommonCrawl

61   0   0.0 ( 0 )
 نشر من قبل Alexander Panchenko
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present DepCC, the largest-to-date linguistically analyzed corpus in English including 365 million documents, composed of 252 billion tokens and 7.5 billion of named entity occurrences in 14.3 billion sentences from a web-scale crawl of the textsc{Common Crawl} project. The sentences are processed with a dependency parser and with a named entity tagger and contain provenance information, enabling various applications ranging from training syntax-based word embeddings to open information extraction and question answering. We built an index of all sentences and their linguistic meta-data enabling quick search across the corpus. We demonstrate the utility of this corpus on the verb similarity task by showing that a distributional model trained on our corpus yields better results than models trained on smaller corpora, like Wikipedia. This distributional model outperforms the state of art models of verb similarity trained on smaller corpora on the SimVerb3500 dataset.



قيم البحث

اقرأ أيضاً

Recent advances in text representation have shown that training on large amounts of text is crucial for natural language understanding. However, models trained without predefined notions of topical interest typically require careful fine-tuning when transferred to specialized domains. When a sufficient amount of within-domain text may not be available, expanding a seed corpus of relevant documents from large-scale web data poses several challenges. First, corpus expansion requires scoring and ranking each document in the collection, an operation that can quickly become computationally expensive as the web corpora size grows. Relying on dense vector spaces and pairwise similarity adds to the computational expense. Secondly, as the domain concept becomes more nuanced, capturing the long tail of domain-specific rare terms becomes non-trivial, especially under limited seed corpora scenarios. In this paper, we consider the problem of fast approximate corpus expansion given a small seed corpus with a few relevant documents as a query, with the goal of capturing the long tail of a domain-specific set of concept terms. To efficiently collect large-scale domain-specific corpora with limited relevance feedback, we propose a novel truncated sparse document bit-vector representation, termed Signature Assisted Unsupervised Corpus Expansion (SAUCE). Experimental results show that SAUCE can reduce the computational burden while ensuring high within-domain lexical coverage.
Machine translation has been a major motivation of development in natural language processing. Despite the burgeoning achievements in creating more efficient machine translation systems thanks to deep learning methods, parallel corpora have remained indispensable for progress in the field. In an attempt to create parallel corpora for the Kurdish language, in this paper, we describe our approach in retrieving potentially-alignable news articles from multi-language websites and manually align them across dialects and languages based on lexical similarity and transliteration of scripts. We present a corpus containing 12,327 translation pairs in the two major dialects of Kurdish, Sorani and Kurmanji. We also provide 1,797 and 650 translation pairs in English-Kurmanji and English-Sorani. The corpus is publicly available under the CC BY-NC-SA 4.0 license.
Predicting which words are considered hard to understand for a given target population is a vital step in many NLP applications such as text simplification. This task is commonly referred to as Complex Word Identification (CWI). With a few exceptions , previous studies have approached the task as a binary classification task in which systems predict a complexity value (complex vs. non-complex) for a set of target words in a text. This choice is motivated by the fact that all CWI datasets compiled so far have been annotated using a binary annotation scheme. Our paper addresses this limitation by presenting the first English dataset for continuous lexical complexity prediction. We use a 5-point Likert scale scheme to annotate complex words in texts from three sources/domains: the Bible, Europarl, and biomedical texts. This resulted in a corpus of 9,476 sentences each annotated by around 7 annotators.
275 - Zeyi Wen , Zeyu Huang , Rui Zhang 2019
Entity extraction is an important task in text mining and natural language processing. A popular method for entity extraction is by comparing substrings from free text against a dictionary of entities. In this paper, we present several techniques as a post-processing step for improving the effectiveness of the existing entity extraction technique. These techniques utilise models trained with the web-scale corpora which makes our techniques robust and versatile. Experiments show that our techniques bring a notable improvement on efficiency and effectiveness.
E2E web test suites are prone to test dependencies due to the heterogeneous multi-tiered nature of modern web apps, which makes it difficult for developers to create isolated program states for each test case. In this paper, we present the first appr oach for detecting and validating test dependencies present in E2E web test suites. Our approach employs string analysis to extract an approximated set of dependencies from the test code. It then filters potential false dependencies through natural language processing of test names. Finally, it validates all dependencies, and uses a novel recovery algorithm to ensure no true dependencies are missed in the final test dependency graph. Our approach is implemented in a tool called TEDD and evaluated on the test suites of six open-source web apps. Our results show that TEDD can correctly detect and validate test dependencies up to 72% faster than the baseline with the original test ordering in which the graph contains all possible dependencies. The test dependency graphs produced by TEDD enable test execution parallelization, with a speed-up factor of up to 7x.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا