ﻻ يوجد ملخص باللغة العربية
We present the second Multi-Epoch X-ray Serendipitous AGN Sample (MEXSAS2), extracted from the 6th release of the XMM Serendipitous Source Catalogue (XMMSSC-DR6), cross-matched with Sloan Digital Sky Survey quasar catalogues DR7Q and DR12Q. Our sample also includes the available measurements for masses, bolometric luminosities, and Eddington ratios. Analyses of the ensemble structure function and spectral variability are presented, together with their dependences on such parameters. We confirm a decrease of the structure function with the X-ray luminosity, and find a weak dependence on the black hole mass. We introduce a new spectral variability estimator, taking errors on both fluxes and spectral indices into account. We confirm an ensemble softer when brighter trend, with no dependence of such estimator on black hole mass, Eddington ratio, redshift, X-ray and bolometric luminosity.
Most of the variability studies of active galactic nuclei (AGNs) are based on ensemble analyses. Nevertheless, it is interesting to provide estimates of the individual variability properties of each AGN, in order to relate them with intrinsic physica
We investigated the rest-frame $approx$0.1-5 year X-ray variability properties of an unbiased and uniformly selected sample of 24 BAL and 35 mini-BAL quasars, making it the largest representative sample used to investigate such variability. We find t
Although absorbed quasars are extremely important for our understanding of the energetics of the Universe, the main physical parameters of their central engines are still poorly known. In this work we present and study a complete sample of 14 quasars
In this work we train three decision-tree based ensemble machine learning algorithms (Random Forest Classifier, Adaptive Boosting and Gradient Boosting Decision Tree respectively) to study quasar selection in the variable source catalog in SDSS Strip
We present new Gemini/GMOS optical spectroscopy of 16 extreme variability quasars (EVQs) that dimmed by more than 1.5 mag in the $g$ band between the Sloan Digital Sky Survey (SDSS) and the Dark Energy Survey (DES) epochs (separated by a few years in