ترغب بنشر مسار تعليمي؟ اضغط هنا

Longitudinal double-spin asymmetry $A_1^{rm p}$ and spin-dependent structure function $g_1^{rm p}$ of the proton at small values of $x$ and $Q^2$

264   0   0.0 ( 0 )
 نشر من قبل Oleg Denisov
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a precise measurement of the proton longitudinal double-spin asymmetry $A_1^{rm p}$ and the proton spin-dependent structure function $g_1^{rm p}$ at photon virtualities $0.006~({rm GeV}/c)^2<Q^2 < 1~({rm GeV}/c)^2$ in the Bjorken $x$ range of $4 times 10^{-5} < x < 4 times 10^{-2}$. The results are based on data collected by the COMPASS Collaboration at CERN using muon beam energies of $160~{rm GeV}$ and $200~{rm GeV}$. The statistical precision is more than tenfold better than that of the previous measurement in this region. In the whole range of $x$, the measured values of $A_1^{rm p}$ and $g_1^{rm p}$ are found to be positive. It is for the first time that spin effects are found at such low values of $x$.

قيم البحث

اقرأ أيضاً

New results for the double spin asymmetry $A_1^{rm p}$ and the proton longitudinal spin structure function $g_1^{rm p}$ are presented. They were obtained by the COMPASS collaboration using polarised 200 GeV muons scattered off a longitudinally polari sed NH$_3$ target. The data were collected in 2011 and complement those recorded in 2007 at 160,GeV, in particular at lower values of $x$. They improve the statistical precision of $g_1^{rm p}(x)$ by about a factor of two in the region $xlesssim 0.02$. A next-to-leading order QCD fit to the $g_1$ world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, $Delta Sigma$ ranging from 0.26 to 0.36, and to a re-evaluation of the first moment of $g_1^{rm p}$. The uncertainty of $Delta Sigma$ is mostly due to the large uncertainty in the present determinations of the gluon helicity distribution. A new evaluation of the Bjorken sum rule based on the COMPASS results for the non-singlet structure function $g_1^{rm NS}(x,Q^2)$ yields as ratio of the axial and vector coupling constants $|g_{rm A}/g_{rm V}| = 1.22 pm 0.05~({rm stat.}) pm 0.10~({rm syst.})$, which validates the sum rule to an accuracy of about 9%.
The spin structure functions g_1 for the proton and the deuteron have been measured over a wide kinematic range in x and Q2 using 1.6 and 5.7 GeV longitudinally polarized electrons incident upon polarized NH_3 and ND_3 targets at Jefferson Lab. Scatt ered electrons were detected in the CEBAF Large Acceptance Spectrometer, for 0.05 < Q^2 < 5 GeV^2 and W < 3 GeV. The first moments of g_1 for the proton and deuteron are presented -- both have a negative slope at low Q^2, as predicted by the extended Gerasimov-Drell-Hearn sum rule. The first result for the generalized forward spin polarizability of the proton gamma_0^p is also reported. This quantity shows strong Q^2 dependence at low Q^2, while Q^6gamma_0^p seems to flatten out at the highest Q^2 accessed by our experiment. Although the first moments of g_1 are consistent with Chiral Perturbation Theory (ChPT) calculations up to approximately Q^2 = 0.06 GeV^2, a significant discrepancy is observed between the gamma_0^p data and ChPT for gamma_0^p, even at the lowest Q2.
Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a $^6$LiD target. The data were taken at $160~{rm GeV}$ beam energy and the results are shown for the k inematic range $1~({rm GeV}/c)^2 < Q^2 < 100~({rm GeV}/c)^2$ in photon virtuality, $0.004<x<0.7$ in the Bjorken scaling variable and $W > 4~{rm GeV}/c^2$ in the mass of the hadronic final state. The deuteron double-spin asymmetry $A_1^{rm d}$ and the deuteron longitudinal-spin structure function $g_1^{rm d}$ are presented in bins of $x$ and $Q^2$. Towards lowest accessible values of $x$, $g_1^{rm d}$ decreases and becomes consistent with zero within uncertainties. The presented final $g_1^{rm d}$ values together with the recently published final $g_1^{rm p}$ values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the $g_1$ world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge $a_0$, {which is identified in the $overline{rm MS}$ renormalisation scheme with the total contribution of quark helicities to the nucleon spin}, is extracted from only the COMPASS deuteron data with negligible extrapolation uncertainty: $a_0 (Q^2 = 3~({rm GeV}/c)^2) = 0.32 pm 0.02_{rm stat} pm0.04_{rm syst} pm 0.05_{rm evol}$. Together with the recent results on the proton spin structure function $g_1^{rm p}$, the results on $g_1^{rm d}$ constitute the COMPASS legacy on the measurements of $g_1$ through inclusive spin-dependent deep inelastic scattering.
We measured the $g_1$ spin structure function of the deuteron at low $Q^{2}$, where QCD can be approximated with chiral perturbation theory ($chi$PT). The data cover the resonance region, up to an invariant mass of $Wapprox1.9$~GeV. The generalized G erasimov-Drell-Hearn sum, the moment $bar{Gamma}_{1}^{d}$ and the integral $bar{I}_gamma^d$ related to the spin polarizability $gamma_{0}^{d}$ are precisely determined down to a minimum $Q^2$ of 0.02~GeV$^2$ for the first time, about 2.5 times lower than that of previous data. We compare them to several $chi$PT calculations and models. These results are the first in a program of benchmark measurements of polarization observables in the $chi$PT domain.
149 - Joanna Kiryluk 2005
We present preliminary results for the first measurements of the double longitudinal spin asymmetry A_LL in inclusive jet production at mid-rapidity in polarized proton-proton collisions at sqrt(s) = 200 GeV. The data amount to ~ 0.5 pb-1 collected a t RHIC in 2003 and 2004 with beam polarizations up to 45%. The jet transverse energies are in the range of 5 < pT < 17 GeV/c. The data are consistent with theoretical evaluations using deep-inelastic scattering parametrizations for gluon polarization in the nucleon, and tend to disfavor large positive values of gluon polarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا