ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric $g$ tensor in low-symmetry two-dimensional hole systems

80   0   0.0 ( 0 )
 نشر من قبل Tobias Korn
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The complex structure of the valence band in many semiconductors leads to multifaceted and unusual properties for spin-3/2 hole systems compared to typical spin-1/2 electron systems. In particular, two-dimensional hole systems show a highly anisotropic Zeeman spin splitting. We have investigated this anisotropy in GaAs/AlAs quantum well structures both experimentally and theoretically. By performing time-resolved Kerr rotation measurements, we found a non-diagonal tensor $g$ that manifests itself in unusual precessional motion as well as distinct dependencies of hole spin dynamics on the direction of the magnetic field $vec{B}$. We quantify the individual components of the tensor $g$ for [113]-, [111]- and [110]-grown samples. We complement the experiments by a comprehensive theoretical study of Zeeman splitting in in-plane and out-of-plane fields $vec{B}$. To this end, we develop a detailed multiband theory for the tensor $g$. Using perturbation theory, we derive transparent analytical expressions for the components of the tensor $g$ that we complement with accurate numerical calculations based on our theoretical framework. We obtain very good agreement between experiment and theory. Our study demonstrates that the tensor $g$ is neither symmetric nor antisymmetric. Opposite off-diagonal components can differ in size by up to an order of magnitude.



قيم البحث

اقرأ أيضاً

148 - M. Kugler , T. Andlauer , T. Korn 2009
We have investigated spin and carrier dynamics of resident holes in high-mobility two-dimensional hole systems in GaAs/Al$_{0.3}$Ga$_{0.7}$As single quantum wells at temperatures down to 400 mK. Time-resolved Faraday and Kerr rotation, as well as tim e-resolved photoluminescence spectroscopy are utilized in our study. We observe long-lived hole spin dynamics that are strongly temperature dependent, indicating that in-plane localization is crucial for hole spin coherence. By applying a gate voltage, we are able to tune the observed hole g factor by more than 50 percent. Calculations of the hole g tensor as a function of the applied bias show excellent agreement with our experimental findings.
238 - T. Korn , M. Kugler , M. Griesbeck 2009
For the realisation of scalable solid-state quantum-bit systems, spins in semiconductor quantum dots are promising candidates. A key requirement for quantum logic operations is a sufficiently long coherence time of the spin system. Recently, hole spi ns in III-V-based quantum dots were discussed as alternatives to electron spins, since the hole spin, in contrast to the electron spin, is not affected by contact hyperfine interaction with the nuclear spins. Here, we report a breakthrough in the spin coherence times of hole ensembles, confined in so called natural quantum dots, in narrow GaAs/AlGaAs quantum wells at temperatures below 500 mK. Consistently, time-resolved Faraday rotation and resonant spin amplification techniques deliver hole-spin coherence times, which approach in the low magnetic field limit values above 70 ns. The optical initialisation of the hole spin polarisation, as well as the interconnected electron and hole spin dynamics in our samples are well reproduced using a rate equation model.
139 - S. T. Chui , Ning Wang , 2020
We propose a state of excitonic solid for double layer two dimensional electron hole systems in transition metal dicalcogenides stacked on opposite sides of thin layers of BN. Properties of the exciton lattice such as its Lindemann ratio and possible supersolid behaviour are studied. We found that the solid can be stabilized relative to the fluid by the potential due to the BN.
GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly-confined 0D and 1D hole sys tems with strong spin-orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately-doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good transistor performance for moderate doping, with conduction freezing out at low temperature for lowly-doped nanowires and inability to reach a clear off-state under gating for the highly-doped nanowires. Our best devices give on-state conductivity 95 nS, off-state conductivity 2 pS, on-off ratio ~$10^{4}$, and sub-threshold slope 50 mV/dec at T = 4 K. Lastly, we made a device featuring a moderately-doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance quantization highlighting the potential for future quantum device studies in this material system.
We investigate the phases of two-dimensional electron-hole systems strongly coupled to a microcavity photon field in the limit of extreme charge imbalance. Using variational wave functions, we examine the competition between different electron-hole p aired states for the specific cases of semiconducting III-V single quantum wells, electron-hole bilayers, and transition metal dichalcogenide monolayers embedded in a planar microcavity. We show how the Fermi sea of excess charges modifies both the electron-hole bound state (exciton) properties and the dielectric constant of the cavity active medium, which in turn affects the photon component of the many-body polariton ground state. On the one hand, long-range Coulomb interactions and Pauli blocking of the Fermi sea promote electron-hole pairing with finite center-of-mass momentum, corresponding to an excitonic roton minimum. On the other hand, the strong coupling to the ultra-low-mass cavity photon mode favors zero-momentum pairs. We discuss the prospect of observing different types of electron-hole pairing in the photon spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا