ﻻ يوجد ملخص باللغة العربية
The complex structure of the valence band in many semiconductors leads to multifaceted and unusual properties for spin-3/2 hole systems compared to typical spin-1/2 electron systems. In particular, two-dimensional hole systems show a highly anisotropic Zeeman spin splitting. We have investigated this anisotropy in GaAs/AlAs quantum well structures both experimentally and theoretically. By performing time-resolved Kerr rotation measurements, we found a non-diagonal tensor $g$ that manifests itself in unusual precessional motion as well as distinct dependencies of hole spin dynamics on the direction of the magnetic field $vec{B}$. We quantify the individual components of the tensor $g$ for [113]-, [111]- and [110]-grown samples. We complement the experiments by a comprehensive theoretical study of Zeeman splitting in in-plane and out-of-plane fields $vec{B}$. To this end, we develop a detailed multiband theory for the tensor $g$. Using perturbation theory, we derive transparent analytical expressions for the components of the tensor $g$ that we complement with accurate numerical calculations based on our theoretical framework. We obtain very good agreement between experiment and theory. Our study demonstrates that the tensor $g$ is neither symmetric nor antisymmetric. Opposite off-diagonal components can differ in size by up to an order of magnitude.
We have investigated spin and carrier dynamics of resident holes in high-mobility two-dimensional hole systems in GaAs/Al$_{0.3}$Ga$_{0.7}$As single quantum wells at temperatures down to 400 mK. Time-resolved Faraday and Kerr rotation, as well as tim
For the realisation of scalable solid-state quantum-bit systems, spins in semiconductor quantum dots are promising candidates. A key requirement for quantum logic operations is a sufficiently long coherence time of the spin system. Recently, hole spi
We propose a state of excitonic solid for double layer two dimensional electron hole systems in transition metal dicalcogenides stacked on opposite sides of thin layers of BN. Properties of the exciton lattice such as its Lindemann ratio and possible
GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly-confined 0D and 1D hole sys
We investigate the phases of two-dimensional electron-hole systems strongly coupled to a microcavity photon field in the limit of extreme charge imbalance. Using variational wave functions, we examine the competition between different electron-hole p