ﻻ يوجد ملخص باللغة العربية
Image retargeting effectively resizes images by preserving the recognizability of important image regions. Most of retargeting methods rely on good importance maps as a cue to retain or remove certain regions in the input image. In addition, the traditional evaluation exhaustively depends on user ratings. There is a legitimate need for a methodological approach for evaluating retargeted results. Therefore, in this paper, we conduct a study and analysis on the prominent method in image retargeting, Seam Carving. First, we introduce two novel evaluation metrics which can be considered as the proxy of user ratings. Second, we exploit salient object dataset as a benchmark for this task. We then investigate different types of importance maps for this particular problem. The experiments show that humans in general agree with the evaluation metrics on the retargeted results and some importance map methods are consistently more favorable than others.
Image retargeting is a new image processing task that renders the change of aspect ratio in images. One of the most famous image-retargeting algorithms is seam-carving. Although seam-carving is fast and straightforward, it usually distorts the images
We present two new metrics for evaluating generative models in the class-conditional image generation setting. These metrics are obtained by generalizing the two most popular unconditional metrics: the Inception Score (IS) and the Frechet Inception D
Purpose: Surgical task-based metrics (rather than entire procedure metrics) can be used to improve surgeon training and, ultimately, patient care through focused training interventions. Machine learning models to automatically recognize individual ta
In this paper, we present a method of clothes retargeting; generating the potential poses and deformations of a given 3D clothing template model to fit onto a person in a single RGB image. The problem is fundamentally ill-posed as attaining the groun
Image retargeting is the task of making images capable of being displayed on screens with different sizes. This work should be done so that high-level visual information and low-level features such as texture remain as intact as possible to the human