ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Nonstandard Neutrino Interactions with IceCube DeepCore

92   0   0.0 ( 0 )
 نشر من قبل Carlos Arg\\\"uelles Delgado
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

As atmospheric neutrinos propagate through the Earth, vacuum-like oscillations are modified by Standard-Model neutral- and charged-current interactions with electrons. Theories beyond the Standard Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These additional interactions may modify the Standard Model matter effect producing a measurable deviation from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino disappearance with three years of IceCube-DeepCore data. The best fit for the muon to tau flavor changing term is $epsilon_{mu tau}=-0.0005$, with a 90% C.L. allowed range of $-0.0067 <epsilon_{mu tau}< 0.0081$. This result is more restrictive than recent limits from other experiments for $epsilon_{mu tau}$. Furthermore, our result is complementary to a recent constraint on $epsilon_{mu tau}$ using another publicly available IceCube high-energy event selection. Together, they constitute the worlds best limits on nonstandard interactions in the $mu-tau$ sector.

قيم البحث

اقرأ أيضاً

We report constraints on nonstandard neutrino interactions (NSI) from the observation of atmospheric neutrinos with IceCube, limiting all individual coupling strengths from a single dataset. Furthermore, IceCube is the first experiment to constrain f lavor-violating and nonuniversal couplings simultaneously. Hypothetical NSI are generically expected to arise due to the exchange of a new heavy mediator particle. Neutrinos propagating in matter scatter off fermions in the forward direction with negligible momentum transfer. Hence the study of the matter effect on neutrinos propagating in the Earth is sensitive to NSI independently of the energy scale of new physics. We present constraints on NSI obtained with an all-flavor event sample of atmospheric neutrinos based on three years of IceCube DeepCore data. The analysis uses neutrinos arriving from all directions, with reconstructed energies between 5.6 GeV and 100 GeV. We report constraints on the individual NSI coupling strengths considered singly, allowing for complex phases in the case of flavor-violating couplings. This demonstrates that IceCube is sensitive to the full NSI flavor structure at a level competitive with limits from the global analysis of all other experiments. In addition, we investigate a generalized matter potential, whose overall scale and flavor structure are also constrained.
We present a search for a light sterile neutrino using three years of atmospheric neutrino data from the DeepCore detector in the energy range of approximately $10-60~$GeV. DeepCore is the low-energy sub-array of the IceCube Neutrino Observatory. The standard three-neutrino paradigm can be probed by adding an additional light ($Delta m_{41}^2 sim 1 mathrm{ eV^2}$) sterile neutrino. Sterile neutrinos do not interact through the standard weak interaction, and therefore cannot be directly detected. However, their mixing with the three active neutrino states leaves an imprint on the standard atmospheric neutrino oscillations for energies below 100 GeV. A search for such mixing via muon neutrino disappearance is presented here. The data are found to be consistent with the standard three neutrino hypothesis. Therefore we derive limits on the mixing matrix elements at the level of $|U_{mu4}|^2 < 0.11 $ and $|U_{tau4}|^2 < 0.15 $ (90% C.L.) for the sterile neutrino mass splitting $Delta m_{41}^2 = 1.0$ eV$^2$.
DeepCore, as a densely instrumented sub-detector of IceCube, extends IceCubes energy reach down to about 10 GeV, enabling the search for astrophysical transient sources, e.g., choked gamma-ray bursts. While many other past and on-going studies focus on triggered time-dependent analyses, we aim to utilize a newly developed event selection and dataset for an untriggered all-sky time-dependent search for transients. In this work, all-flavor neutrinos are used, where neutrino types are determined based on the topology of the events. We extend the previous DeepCore transient half-sky search to an all-sky search and focus only on short timescale sources (with a duration of $10^2 sim 10^5$ seconds). All-sky sensitivities to transients in an energy range from 10 GeV to 300 GeV will be presented in this poster. We show that DeepCore can be reliably used for all-sky searches for short-lived astrophysical sources.
We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between May 15th 2012 and April 30th 2013. While the search methods employed in this analysis are similar to th ose used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon neu- trinos from the Northern Sky (-5$^{circ}$ < {delta} < 90$^{circ}$ ) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events is used to search for any significant self-correlation in the dataset. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1$,$s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae.
We present a measurement of atmospheric tau neutrino appearance from oscillations with three years of data from the DeepCore sub-array of the IceCube Neutrino Observatory. This analysis uses atmospheric neutrinos from the full sky with reconstructed energies between 5.6 GeV and 56 GeV to search for a statistical excess of cascade-like neutrino events which are the signature of nutau interactions. For CC+NC (CC-only) interactions, we measure the tau neutrino normalization to be 0.73 +0.30 -0.24 (0.57 +0.36 -0.30) and exclude the absence of tau neutrino oscillations at a significance of 3.2 sigma (2.0 sigma) These results are consistent with, and of similar precision to, a confirmatory IceCube analysis also presented, as well as measurements performed by other experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا