ترغب بنشر مسار تعليمي؟ اضغط هنا

Causality theory for closed cone structures with applications

82   0   0.0 ( 0 )
 نشر من قبل Ettore Minguzzi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Minguzzi




اسأل ChatGPT حول البحث

We develop causality theory for upper semi-continuous distributions of cones over manifolds generalizing results from mathematical relativity in two directions: non-round cones and non-regular differentiability assumptions. We prove the validity of most results of the regular Lorentzian causality theory including causal ladder, Fermats principle, notable singularity theorems in their causal formulation, Avez-Seifert theorem, characterizations of stable causality and global hyperbolicity by means of (smooth) time functions. For instance, we give the first proof for these structures of the equivalence between stable causality, $K$-causality and existence of a time function. The result implies that closed cone structures that admit continuous increasing functions also admit smooth ones. We also study proper cone structures, the fiber bundle analog of proper cones. For them we obtain most results on domains of dependence. Moreover, we prove that horismos and Cauchy horizons are generated by lightlike geodesics, the latter being defined through the achronality property. Causal geodesics and steep temporal functions are obtained with a powerful product trick. The paper also contains a study of Lorentz-Minkowski spaces under very weak regularity conditions. Finally, we introduce the concepts of stable distance and stable spacetime solving two well known problems (a) the characterization of Lorentzian manifolds embeddable in Minkowski spacetime, they turn out to be the stable spacetimes, (b) the proof that topology, order and distance (with a formula a la Connes) can be represented by the smooth steep temporal functions. The paper is self-contained, in fact we do not use any advanced result from mathematical relativity.

قيم البحث

اقرأ أيضاً

115 - E. Minguzzi 2019
We complement our work on the causality of upper semi-continuous distributions of cones with some results on Cauchy hypersurfaces. We prove that every locally stably acausal Cauchy hypersurface is stable. Then we prove that the signed distance $d_S$ from a spacelike hypersurface $S$ is, in a neighborhood of it, as regular as the hypersurface, and by using this fact we give a proof that every Cauchy hypersurface is the level set of a Cauchy temporal (and steep) function of the same regularity as the hypersurface. We also show that in a globally hyperbolic closed cone structure compact spacelike hypersurfaces with boundary can be extended to Cauchy spacelike hypersurfaces of the same regularity. We end the work with a separation result and a density result.
Hawkings singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore lie outside the scope of Hawkings hypotheses, an important example being the massive Klein-Gordon field. Here we derive lower bounds on local averages of the EED for solutions to the Klein-Gordon equation, allowing nonzero mass and nonminimal coupling to the scalar curvature. The averages are taken along timelike geodesics or over spacetime volumes, and our bounds are valid for a range of coupling constants including both minimal and conformal coupling. Using methods developed by Fewster and Galloway, these lower bounds are applied to prove a Hawking-type singularity theorem for solutions to the Einstein-Klein-Gordon theory, asserting that solutions with sufficient initial contraction at a compact Cauchy surface will be future timelike geodesically incomplete.
We show that many standard results of Lorentzian causality theory remain valid if the regularity of the metric is reduced to $C^{1,1}$. Our approach is based on regularisations of the metric adapted to the causal structure.
Scalar field cosmologies with a generalized harmonic potential and matter with energy density $rho_m$, pressure $p_m$, and barotropic equation of state (EoS) $p_m=(gamma-1)rho_m, ; gammain[0,2]$ in Kantowski-Sachs (KS) and closed Friedmann--Lema^itre --Robertson--Walker (FLRW) metrics are investigated. We use methods from non--linear dynamical systems theory and averaging theory considering a time--dependent perturbation function $D$. We define a regular dynamical system over a compact phase space, obtaining global results. That is, for KS metric the global late--time attractors of full and time--averaged systems are two anisotropic contracting solutions, which are non--flat locally rotationally symmetric (LRS) Kasner and Taub (flat LRS Kasner) for $0leq gamma leq 2$, and flat FLRW matter--dominated universe if $0leq gamma leq frac{2}{3}$. For closed FLRW metric late--time attractors of full and averaged systems are a flat matter--dominated FLRW universe for $0leq gamma leq frac{2}{3}$ as in KS and Einstein-de Sitter solution for $0leqgamma<1$. Therefore, time--averaged system determines future asymptotics of full system. Also, oscillations entering the system through Klein-Gordon (KG) equation can be controlled and smoothed out when $D$ goes monotonically to zero, and incidentally for the whole $D$-range for KS and for closed FLRW (if $0leq gamma< 1$) too. However, for $gammageq 1$ closed FLRW solutions of the full system depart from the solutions of the averaged system as $D$ is large. Our results are supported by numerical simulations.
Most early twentieth century relativists --- Lorentz, Einstein, Eddington, for examples --- claimed that general relativity was merely a theory of the aether. We shall confirm this claim by deriving the Einstein equations using aether theory. We shal l use a combination of Lorentzs and Kelvins conception of the aether. Our derivation of the Einstein equations will not use the vanishing of the covariant divergence of the stress-energy tensor, but instead equate the Ricci tensor to the sum of the usual stress-energy tensor and a stress-energy tensor for the aether, a tensor based on Kelvins aether theory. A crucial first step is generalizing the Cartan formalism of Newtonian gravity to allow spatial curvature, as conjectured by Gauss and Riemann.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا