ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden $U(1)$ gauge symmetry realizing a neutrinophilic two-Higgs-doublet model with dark matter

133   0   0.0 ( 0 )
 نشر من قبل Takaaki Nomura
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a neutrinophilic two Higgs doublet model with hidden local $U(1)$ symmetry, where active neutrinos are Dirac type, and a fermionic DM candidate is naturally induced as a result of remnant symmetry even after the spontaneous symmetry breaking. In addition, a physical Goldstone boson is arisen as a consequence of two types of gauge singlet bosons and contributes to the DM phenomenologies as well as additional neutral gauge boson. Then we will analyze the relic density of DM within the safe range of direct detection searches, and show the allowed region of dark matter mass.

قيم البحث

اقرأ أيضاً

General Two Higgs Doublet Models (2HDM) are popular Standard Model extensions but feature flavor changing interactions and lack neutrino masses. We discuss a 2HDM where neutrino masses are generated via type I seesaw and propose an extension where ne utrino masses are generated via a type II seesaw mechanism with flavor changing interactions being absent via the presence of a U(1) gauge symmetry. After considering a variety of bounds such as those rising from collider and electroweak precision we show that our proposal stands as a UV complete 2HDM with a dark photon where neutrino masses and flavor changing interactions are addressed. A possible dark matter realization is also discussed.
We study a fermionic dark matter model in which the interaction of the dark and visible sectors is mediated by Higgs portal type couplings. Specifically, we consider the mixing of a dark sector scalar with the scalars of a Two Higgs Doublet Model ext ension of the Standard Model. Given that scalar exchange will result in a spin-independent dark matter-nucleon scattering cross section, such a model is potentially subject to stringent direct detection constraints. Moreover, the addition of new charged scalars introduce non-trivial flavour constraints. Nonetheless, this model allows more freedom than a standard Higgs portal scenario involving a single Higgs doublet, and much of the interesting parameter space is not well approximated by a Simplified Model with a single scalar mediator. We perform a detailed parameter scan to determine the mass and coupling parameters which satisfy direct detection, flavour, precision electroweak, stability, and perturbativity constraints, while still producing the correct relic density through thermal freezeout.
We study a two scalar inert doublet model (IDMS$_3$) which is stabilized by a $S_3$ symmetry. We consider two scenarios: i) two of the scalars in each charged sector are mass degenerated due to a residual $Z_2$ symmetry, ii) there is no mass degenera cy because of the introduction of soft terms that break the $Z_2$ symmetry. We show that both scenarios provide good dark matter candidates for some range of parameters.
Models with two or more scalar doublets with discrete or global symmetries can have vacua with vanishing vacuum expectation values in the bases where symmetries are imposed. If a suitable symmetry stabilises such vacua, these models may lead to inter esting dark matter candidates, provided that the symmetry prevents couplings among the dark matter candidates and the fermions. We analyse three-Higgs-doublet models with an underlying $S_3$ symmetry. These models have many distinct vacua with one or two vanishing vacuum expectation values which can be stabilised by a remnant of the $S_3$ symmetry which survived spontaneous symmetry breaking. We discuss all possible vacua in the context of $S_3$-symmetric three-Higgs-doublet models, allowing also for softly broken $S_3$, and explore one of the vacuum configurations in detail. In the case we explore, only one of the three Higgs doublets is inert. The other two are active, and therefore the active sector, in many aspects, behaves like a two-Higgs-doublet model. The way the fermions couple to the scalar sector is constrained by the $S_3$ symmetry and is such that the flavour structure of the model is solely governed by the $V_text{CKM}$ matrix which, in our framework, is not constrained by the $S_3$ symmetry. This is a key requirement for models with minimal flavour violation. In our model there is no CP violation in the scalar sector. We study this model in detail giving the masses and couplings and identifying the range of parameters that are compatible with theoretical and experimental constraints, both from accelerator physics and from astrophysics.
We propose a radiative lepton model, in which the charged lepton masses are generated at one-loop level, and the neutrino masses are induced at two-loop level. On the other hand, tau mass is derived at tree level since it is too heavy to generate rad iatively. Then we discuss muon anomalous magnetic moment together with the constraint of lepton flavor violation. A large muon magnetic moment is derived due to the vector like charged fermions which are newly added to the standard model. In addition, considering a scalar dark matter in our model, a strong gamma-ray signal is produced by dark matter annihilation via internal bremsstrahlung. We can also obtain the effective neutrino number by the dark radiation of the Goldstone boson coming from the imposed global $U(1)$ symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا