ترغب بنشر مسار تعليمي؟ اضغط هنا

Topology in the 2d Heisenberg Model under Gradient Flow

61   0   0.0 ( 0 )
 نشر من قبل Wolfgang Bietenholz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 2d Heisenberg model --- or 2d O(3) model --- is popular in condensed matter physics, and in particle physics as a toy model for QCD. Along with other analogies, it shares with 4d Yang-Mills theories, and with QCD, the property that the configurations are divided in topological sectors. In the lattice regularisation the topological charge $Q$ can still be defined such that $Q in mathbb{Z}$. It has generally been observed, however, that the topological susceptibility $chi_{rm t} = langle Q^2 rangle / V$ does not scale properly in the continuum limit, i.e. that the quantity $chi_{rm t} xi^2$ diverges for $xi to infty$ (where $xi$ is the correlation length in lattice units). Here we address the question whether or not this divergence persists after the application of the Gradient Flow.



قيم البحث

اقرأ أيضاً

The 2d O(3) model is widely used as a toy model for ferromagnetism and for Quantum Chromodynamics. With the latter it shares --- among other basic aspects --- the property that the continuum functional integral splits into topological sectors. Topolo gy can also be defined in its lattice regularised version, but semi-classical arguments suggest that the topological susceptibility $chi_{rm t}$ does not scale towards a finite continuum limit. Previous numerical studies confirmed that the quantity $chi_{rm t}, xi^{2}$ diverges at large correlation length $xi$. Here we investigate the question whether or not this divergence persists when the configurations are smoothened by the Gradient Flow (GF). The GF destroys part of the topological windings; on fine lattices this strongly reduces $chi_{rm t}$. However, even when the flow time is so long that the GF impact range --- or smoothing radius --- attains $xi/2$, we do still not observe evidence of continuum scaling.
We study the impact of the Gradient Flow on the topology in various models of lattice field theory. The topological susceptibility $chi_{rm t}$ is measured directly, and by the slab method, which is based on the topological content of sub-volumes (sl abs) and estimates $chi_{rm t}$ even when the system remains trapped in a fixed topological sector. The results obtained by both methods are essentially consistent, but the impact of the Gradient Flow on the characteristic quantity of the slab method seems to be different in 2-flavour QCD and in the 2d O(3) model. In the latter model, we further address the question whether or not the Gradient Flow leads to a finite continuum limit of the topological susceptibility (rescaled by the correlation length squared, $xi^{2}$). This ongoing study is based on direct measurements of $chi_{rm t}$ in $L times L$ lattices, at $L/xi simeq 6$.
We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vorti ces (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition - at least up to moderate vortex suppression. Thus our study underscores the robustness of universality, which persists even when basic principles of classical physics are violated. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. In the massless phase, the BKT value of the critical exponent eta_c is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour.
We study 2d U(1) gauge Higgs systems with a $theta$-term. For properly discretizing the topological charge as an integer we introduce a mixed group- and algebra-valued discretization (MGA scheme) for the gauge fields, such that the charge conjugation symmetry at $theta = pi$ is implemented exactly. The complex action problem from the $theta$-term is overcome by exactly mapping the partition sum to a worldline/worldsheet representation. Using Monte Carlo simulation of the worldline/worldsheet representation we study the system at $theta = pi$ and show that as a function of the mass parameter the system undergoes a phase transition. Determining the critical exponents from a finite size scaling analysis we show that the transition is in the 2d Ising universality class. We furthermore study the U(1) gauge Higgs systems at $theta = pi$ also with charge 2 matter fields, where an additional $Z_2$ symmetry is expected to alter the phase structure. Our results indicate that for charge 2 a true phase transition is absent and only a rapid crossover separates the large and small mass regions.
Non-zero topological charge is prohibited in the chiral limit of gauge-fermion systems because any instanton would create a zero mode of the Dirac operator. On the lattice, however, the geometric $Q_text{geom}=langle F{tilde F}rangle /32pi^2$ definit ion of the topological charge does not necessarily vanish even when the gauge fields are smoothed for example with gradient flow. Small vacuum fluctuations (dislocations) not seen by the fermions may be promoted to instanton-like objects by the gradient flow. We demonstrate that these artifacts of the flow cause the gradient flow renormalized gauge coupling to increase and run faster. In step-scaling studies such artifacts contribute a term which increases with volume. The usual $a/Lto 0$ continuum limit extrapolations can hence lead to incorrect results. In this paper we investigate these topological lattice artifacts in the SU(3) 10-flavor system with domain wall fermions and the 8-flavor system with staggered fermions. Both systems exhibit nonzero topological charge at the strong coupling, especially when using Symanzik gradient flow. We demonstrate how this artifact impacts the determination of the renormalized gauge coupling and the step-scaling $beta$ function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا