ﻻ يوجد ملخص باللغة العربية
We relate poles of local Godement-Jacquet L-functions to distributions on matrix spaces with singular supports. As an application, we show the irreducibility of the full theta lifts to $GL_n(F)$ of generic irreducible representations of $GL_n(F)$, where $F$ is an arbitrary local field.
We evaluate regularized theta lifts for Lorentzian lattices in three different ways. In particular, we obtain formulas for their values at special points involving coefficients of mock theta functions. By comparing the different evaluations, we deriv
We show that the normalized supercharacters of principal admissible modules over the affine Lie superalgebra $hat{sell}_{2|1}$ (resp. $hat{psell}_{2|2}$) can be modified, using Zwegers real analytic corrections, to form a modular (resp. $S$-) invaria
It is well known that the normaized characters of integrable highest weight modules of given level over an affine Lie algebra $hat{frak{g}}$ span an $SL_2(mathbf{Z})$-invariant space. This result extends to admissible $hat{frak{g}}$-modules, where $f
We show that the normalized supercharacters of principal admissible modules, associated to each integrable atypical module over the affine Lie superalgebra $widehat{sl}_{2|1}$ can be modified, using Zwegers real analytic corrections, to form an $SL_2
We study modular invariance of normalized supercharacters of tame integrable modules over an affine Lie superalgebra, associated to an arbitrary basic Lie superalgebra $ mathfrak{g}. $ For this we develop a several step modification process of multiv