ﻻ يوجد ملخص باللغة العربية
The Cherenkov Telescope Array is a next generation ground-based gamma-ray observatory de- signed to detect photons in the 20 GeV to 300 TeV energy range. With a sensitivity improvement of up to one order of magnitude on the entire energy range with respect to currently operating facilities, coupled with significantly better angular resolution, the array will be used to address many open questions in high-energy astrophysics. In addition, CTA will explore the ultra-high energy (E >50 TeV) window with great sensitivity for the first time. CTA is expected to reveal a detailed picture of the Galactic plane at the highest energies, and to discover around one hundred new supernova remnants and many hundreds of pulsar wind nebulae, according to current population estimates. The ability of the observatory to resolve such a large number of Galactic sources is one of the challenges to be faced. In this paper, we will present the first simulated scan of the Galactic plane with a realistic observation strategy, with particular attention to the potential source confusion. We will also present prospects for morphological studies of extended sources, such as the young SNR RX J1713.7-39.
Surveys open up unbiased discovery space and generate legacy datasets of long-lasting value. One of the goals of imaging arrays of Cherenkov telescopes like CTA is to survey areas of the sky for faint very high energy gamma-ray (VHE) sources, especia
Several types of Galactic sources, like magnetars, microquasars, novae or pulsar wind nebulae flares, display transient emission in the X-ray band. Some of these sources have also shown emission at MeV--GeV energies. However, none of these Galactic t
Among all the high-energy environments of our Galaxy, the Galactic Center (GC) region is definitely the richest. It harbors a large amount of non-thermal emitters, including the closest supermassive black hole, dense molecular clouds, regions with st
Misaligned AGN (MAGNs), i.e., radio-loud AGNs with the jet not pointing directly towards us, represent a new class of GeV emitters revealed by the Fermi space telescope. Although they comprise only a small fraction of the high-energy sources, MAGNs a
The Cherenkov Telescope Array (CTA) is the future large observatory in the very high energy (VHE) domain. Operating from 20 GeV to 300 TeV, it will be composed of tens of Imaging Air Cherenkov Telescopes (IACTs) displaced in a large area of a few squ