ترغب بنشر مسار تعليمي؟ اضغط هنا

Six Higgs Doublets Model for Dark Matter

294   0   0.0 ( 0 )
 نشر من قبل Nidal Chamoun
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider an extension of the Higgs sector in the standard model (SM) with six Higgs doublets. The gauge couplings are unified without supersymmetry in this model. The lightest of the extra Higgs particles, being stabilized by a discrete symmetry imposed from the outset, presents a plausible candidate for dark matter. For a specific acceptable benchmark point, we show that the model is viable regarding the constraints of relic density, direct detection and invisible Higgs decay. We comment on the mean free path of the dark matter candidate.



قيم البحث

اقرأ أيضاً

We investigate the potential stochastic gravitational waves from first-order electroweak phase transitions in a model with pseudo-Nambu-Goldstone dark matter and two Higgs doublets. The dark matter candidate can naturally evade direct detection bound s, and can achieve the observed relic abundance via the thermal mechanism. Three scalar fields in the model obtain vacuum expectation values, related to phase transitions at the early Universe. We search for the parameter points that can cause first-order phase transitions, taking into account the existed experimental constraints. The resulting gravitational wave spectra are further evaluated. Some parameter points are found to induce strong gravitational wave signals, which have the opportunity to be detected in future space-based interferometer experiments LISA, Taiji, and TianQin.
The inability to predict neutrino masses and the existence of the dark matter are two essential shortcomings of the Standard Model. The Higgs Triplet Model provides an elegant resolution of neutrino masses via the seesaw mechanism. We show here that introducing vectorlike leptons in the model also provides a resolution to the problem of dark matter. We investigate constraints, including the invisible decay width of the Higgs boson and the electroweak precision variables, and impose restrictions on model parameters. We analyze the effect of the relic density constraint on the mass and Yukawa coupling of dark matter. We also calculate the cross sections for indirect and direct dark matter detection and show our model predictions for the neutrino and muon fluxes from the Sun, and the restrictions they impose on the parameter space. With the addition of vectorlike leptons, the model is completely consistent with dark matter constraints, in addition to improving electroweak precision and doubly charged mass restrictions, which are rendered consistent with present experimental data.
We analyze the effects of introducing vector-like leptons in the Higgs Triplet Model providing the lightest vector-like neutrino as a Dark Matter candidate. We explore the effect of the relic density constraint on the mass and Yukawa coupling of dark matter, as well as calculate the cross sections for indirect and direct dark matter detection. We show our model predictions for the neutrino and muon fluxes from the Sun, and the restrictions they impose on the parameter space. We show that this model, with a restricted parameter space, is completely consistent with dark matter constraints, and indicate the resulting mass region for the dark matter.
Based on a recent idea by Krohn and Yavin, we construct a little Higgs model with an internal parity that is not broken by anomalous Wess-Zumino-Witten terms. The model is a modification of the minimal moose models by Arkani-Hamed et al. and Cheng an d Low. The new parity prevents large corrections to oblique electroweak parameters and leads to a viable dark matter candidate. It is shown how the complete Standard Model particle content, including quarks and leptons together with their Yukawa couplings, can be implemented. Successful electroweak symmetry breaking and consistency with electroweak precision constraints is achieved for natural paramters choices. A rich spectrum of new particles is predicted at the TeV scale, some of which have sizable production cross sections and striking decay signatures at the LHC.
We study a two scalar inert doublet model (IDMS$_3$) which is stabilized by a $S_3$ symmetry. We consider two scenarios: i) two of the scalars in each charged sector are mass degenerated due to a residual $Z_2$ symmetry, ii) there is no mass degenera cy because of the introduction of soft terms that break the $Z_2$ symmetry. We show that both scenarios provide good dark matter candidates for some range of parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا