ترغب بنشر مسار تعليمي؟ اضغط هنا

A near-infrared interferometric survey of debris-disk stars. VI. Extending the exozodiacal light survey with CHARA/JouFLU

97   0   0.0 ( 0 )
 نشر من قبل Paul D. Nunez
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of high-angular-resolution observations that search for exozodiacal light in a sample of main sequence stars and sub-giants. Using the jouvence of the fiber linked unit for optical recombination (JouFLU) at the center for high angular resolution astronomy (CHARA) telescope array, we have observed a total of 44 stars. Out of the 44 stars, 33 are new stars added to the initial, previously published survey of 42 stars performed at CHARA with the fiber linked unit for optical recombiation (FLUOR). Since the start of the survey extension, we have detected a K-band circumstellar excess for six new stars at the ~ 1% level or higher, four of which are known or candidate binaries, and two for which the excess could be attributed to exozodiacal dust. We have also performed follow-up observations of 11 of the stars observed in the previously published survey and found generally consistent results. We do however detect a significantly larger excess on three of these follow-up targets: Altair, $upsilon$ And and $kappa$ CrB. Interestingly, the last two are known exoplanet host stars. We perform a statistical analysis of the JouFLU and FLUOR samples combined, which yields an overall exozodi detection rate of $21.7^{+5.7}_{-4.1}%$. We also find that the K-band excess in FGK-type stars correlates with the existence of an outer reservoir of cold ($lesssim 100,$K) dust at the $99%$ confidence level, while the same cannot be said for A-type stars.



قيم البحث

اقرأ أيضاً

(Abridged) Dust is expected to be ubiquitous in extrasolar planetary systems owing to the dynamical activity of minor bodies. Inner dust populations are, however, still poorly known because of the high contrast and small angular separation with respe ct to their host star. We aim to determine the level of near-infrared exozodiacal dust emission around a sample of 42 nearby main sequence stars with spectral types ranging from A to K and to investigate its correlation with various stellar parameters and with the presence of cold dust belts. We use high-precision K-band visibilities obtained with the FLUOR interferometer on the shortest baseline of the CHARA array. The calibrated visibilities are compared with the expected visibility of the stellar photosphere to assess whether there is an additional, fully resolved circumstellar emission. Near-infrared circumstellar emission amounting to about 1% of the stellar flux is detected around 13 of our 42 target stars. Follow-up observations showed that one of them (eps Cep) is associated with a stellar companion, while another one was detected around what turned out to be a giant star (kap CrB). The remaining 11 excesses found around single main sequence stars are most probably associated with hot circumstellar dust, yielding an overall occurrence rate of 28+8-6% for our (biased) sample. We show that the occurrence rate of bright exozodiacal discs correlates with spectral type, K-band excesses being more frequent around A-type stars. It also correlates with the presence of detectable far-infrared excess emission in the case of solar-type stars. This study provides new insight into the phenomenon of bright exozodiacal discs, showing that hot dust populations are probably linked to outer dust reservoirs in the case of solar-type stars. For A-type stars, no clear conclusion can be made regarding the origin of the detected near-infrared excesses.
142 - O. Absil , L. Marion , S. Ertel 2021
(abridged) Context. The origin of hot exozodiacal dust and its connection with outer dust reservoirs remains unclear. Aims. We aim to explore the possible connection between hot exozodiacal dust and warm dust reservoirs (> 100 K) in asteroid belts. M ethods. We use precision near-infrared interferometry with VLTI/PIONIER to search for resolved emission at H band around a selected sample of nearby stars. Results. Our observations reveal the presence of resolved near-infrared emission around 17 out of 52 stars, four of which are shown to be due to a previously unknown stellar companion. The 13 other H-band excesses are thought to originate from the thermal emission of hot dust grains. Taking into account earlier PIONIER observations, and after reevaluating the warm dust content of all our PIONIER targets through spectral energy distribution modeling, we find a detection rate of 17.1(+8.1)(-4.6)% for H-band excess around main sequence stars hosting warm dust belts, which is statistically compatible with the occurrence rate of 14.6(+4.3)(-2.8)% found around stars showing no signs of warm dust. After correcting for the sensitivity loss due to partly unresolved hot disks, under the assumption that they are arranged in a thin ring around their sublimation radius, we however find tentative evidence at the 3{sigma} level that H-band excesses around stars with outer dust reservoirs (warm or cold) could be statistically larger than H-band excesses around stars with no detectable outer dust. Conclusions. Our observations do not suggest a direct connection between warm and hot dust populations, at the sensitivity level of the considered instruments, although they bring to light a possible correlation between the level of H-band excesses and the presence of outer dust reservoirs in general.
161 - S. Ertel , D. Defr`ere , O.Absil 2016
Context: Extended circumstellar emission has been detected within a few 100 milli-arcsec around > 10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other techniques, should they yield similar results o r non-detections, can provide strong constraints on the origin of the emission. They can also reveal the variability of the phenomenon. Aims: We aim to demonstrate the persistence of the phenomenon over time scales of a few years and to search for variability of our previously detected excesses. Methods: Using VLTI/PIONIER in H band we have carried out multi-epoch observations of the stars for which a near-infrared excess was previously detected with the same observing technique and instrument. The detection rates and distribution of the excesses from our original survey and the follow-up observations are compared statistically. A search for variability of the excesses in our time series is carried out based on the level of the broadband excesses. Results: In 12 of 16 follow-up observations, an excess is re-detected with a significance of > 2 sigma, and in 7 of 16 follow-up observations significant excess (> 3 sigma) has been re-detected. We statistically demonstrate with very high confidence that the phenomenon persists for the majority of the systems. We also present the first detection of potential variability in two sources. Conclusions: We conclude that the phenomenon responsible for the excesses persists over time scales of a few years for the majority of the systems. However, we also find that variability intrinsic to a target can cause it to have no significant excess at the time of a specific observation.
457 - O. Absil , E. Di Folco , A. Merand 2008
High-precision interferometric observations of six early-type main sequence stars known to harbour cold debris discs have been obtained in the near-infrared K band with the FLUOR instrument at the CHARA Array. The measured squared visibilities are co mpared to the expected visibility of the stellar photospheres based on theoretical photospheric models taking into account rotational distortion, searching for potential visibility reduction at short baselines due to circumstellar emission. Our observations bring to light the presence of resolved circumstellar emission around one of the six target stars (zeta Aql) at the 5 sigma level. The morphology of the emission source cannot be directly constrained because of the sparse spatial frequency sampling of our interferometric data. Using complementary adaptive optics observations and radial velocity measurements, we find that the presence of a low-mass companion is a likely origin for the excess emission. The potential companion has a K-band contrast of four magnitudes, a most probable mass of about 0.6 Msun, and is expected to orbit between about 5.5 AU and 8 AU from its host star assuming a purely circular orbit. Nevertheless, by adjusting a physical debris disc model to the observed Spectral Energy Distribution of the zeta Aql system, we also show that the presence of hot dust within 10 AU from zeta Aql, producing a total thermal emission equal to 1.69 +- 0.31% of the photospheric flux in the K band, is another viable explanation for the observed near-infrared excess. Our re-interpretation of archival near- to far-infrared photometric measurements shows however that cold dust is not present around zeta Aql at the sensitivity limit of the IRS and MIPS instruments onboard Spitzer, and urges us to remove zeta Aql from the category of bona fide debris disc stars.
Exozodiacal dust is warm or hot dust found in the inner regions of planetary systems orbiting main sequence stars, in or around their habitable zones. The dust can be the most luminous component of extrasolar planetary systems, but predominantly emit s in the near- to mid-infrared where it is outshone by the host star. Interferometry provides a unique method of separating this dusty emission from the stellar emission. The visitor instrument PIONIER at the Very Large Telescope Interferometer (VLTI) has been used to search for hot exozodiacal dust around a large sample of nearby main sequence stars. The results of this survey are summarised: 9 out of 85 stars show excess exozodiacal emission over the stellar photospheric emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا