ترغب بنشر مسار تعليمي؟ اضغط هنا

Environmentally-Sensitive Theory of Electronic and Optical Transitions in Atomically-Thin Semiconductors

142   0   0.0 ( 0 )
 نشر من قبل Timothy Berkelbach
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an electrostatic theory of band gap renormalization in atomically-thin semiconductors that captures the strong sensitivity to the surrounding dielectric environment. In particular, our theory aims to correct known band gaps, such as that of the three-dimensional bulk crystal. Combining our quasiparticle band gaps with an effective mass theory of excitons yields environmentally-sensitive optical gaps as would be observed in absorption or photoluminescence. For an isolated monolayer of MoS$_2$, the presented theory is in good agreement with ab initio results based on the GW approximation and the Bethe-Salpeter equation. We find that changes in the electronic band gap are almost exactly offset by changes in the exciton binding energy, such that the energy of the first optical transition is nearly independent of the electrostatic environment, rationalizing experimental observations.



قيم البحث

اقرأ أيضاً

The realization of mixtures of excitons and charge carriers in van-der-Waals materials presents a new frontier for the study of the many-body physics of strongly interacting Bose-Fermi mixtures. In order to derive an effective low-energy model for su ch systems, we develop an exact diagonalization approach based on a discrete variable representation that predicts the scattering and bound state properties of three charges in two-dimensional transition metal dichalcogenides. From the solution of the quantum mechanical three-body problem we thus obtain the bound state energies of excitons and trions within an effective mass model which are in excellent agreement with Quantum Monte Carlo predictions. The diagonalization approach also gives access to excited states of the three-body system. This allows us to predict the scattering phase shifts of electrons and excitons that serve as input for a low-energy theory of interacting mixtures of excitons and charge carriers at finite density. To this end we derive an effective exciton-electron scattering potential that is directly applicable for Quantum Monte-Carlo or diagrammatic many-body techniques. As an example, we demonstrate the approach by studying the many-body physics of exciton Fermi polarons in transition-metal dichalcogenides, and we show that finite-range corrections have a substantial impact on the optical absorption spectrum. Our approach can be applied to a plethora of many-body phenomena realizable in atomically thin semiconductors ranging from exciton localization to induced superconductivity.
194 - Jiong Yang , Zhu Wang , Fan Wang 2014
Two-dimensional (2D) materials have emerged as promising candidates for miniaturized optoelectronic devices, due to their strong inelastic interactions with light. On the other hand, a miniaturized optical system also requires strong elastic light-ma tter interactions to control the flow of light. Here, we report giant optical path length (OPL) from a single-layer molybdenum disulfide (MoS2), which is around one order of magnitude larger than that from a single-layer graphene. Using such giant OPL to engineer the phase front of optical beams, we demonstrated, to the best of our knowledge, the worlds thinnest optical lens consisting of a few layers of MoS2 less than 6.3 nm thick. Moreover, we show that MoS2 has much better dielectric response than good conductor (like gold) and other dielectric materials (like Si, SiO2 or graphene). By taking advantage of the giant elastic scattering efficiency in ultra-thin high-index 2D materials, we demonstrated high-efficiency gratings based on a single- or few-layers of MoS2. The capability of manipulating the flow of light in 2D materials opens an exciting avenue towards unprecedented miniaturization of optical components and the integration of advanced optical functionalities.
220 - Xiangbin Cai , Zefei Wu , Xu Han 2021
Electrically interfacing atomically thin transition metal dichalcogenide semiconductors (TMDSCs) with metal leads is challenging because of undesired interface barriers, which have drastically constrained the electrical performance of TMDSC devices f or exploring their unconventional physical properties and realizing potential electronic applications. Here we demonstrate a strategy to achieve nearly barrier-free electrical contacts with few-layer TMDSCs by engineering interfacial bonding distortion. The carrier-injection efficiency of such electrical junction is substantially increased with robust ohmic behaviors from room to cryogenic temperatures. The performance enhancements of TMDSC field-effect transistors are well reflected by the ultralow contact resistance (down to 90 Ohm um in MoS2, towards the quantum limit), the ultrahigh field-effect mobility (up to 358,000 cm2V-1s-1 in WSe2) and the prominent transport characteristics at cryogenic temperatures. This method also offers new possibilities of the local manipulation of structures and electronic properties for TMDSC device design.
We show that a transition metal dichalcogenide monolayer with a radiatively broadened exciton resonance would exhibit perfect extinction of a transmitted field. This result holds for s- or p-polarized weak resonant light fields at any incidence angle , due to the conservation of in-plane momentum of excitons and photons in a flat defect-free two dimensional crystal. In contrast to extinction experiments with single quantum emitters, exciton-exciton interactions lead to an enhancement of reflection with increasing power for incident fields that are blue detuned with respect to the exciton resonance. We show that the interactions limit the maximum reflection that can be achieved by depleting the incoming coherent state into an outgoing two-mode squeezed state.
We have investigated the electronic and optical properties of epitaxial La1-xSrxFeO3 for x from 0 to 1 prepared by molecular beam epitaxy. Core-level and valence-band x-ray photoemission features monotonically shift to lower binding energy with incre asing x, indicating downward movement of the Fermi level toward to the valence band maximum. Both Fe 2p and O 1s spectra broaden to higher binding energy with increasing x, consistent with delocalization of Sr-induced holes in the Fe 3d/O 2p hybridized valence band. Combining X-ray valence band photoemission and O K-edge x-ray absorption data, we map the evolution of the occupied and unoccupied bands and observe a narrowing of the gap, along with a transfer of state density from just below to just above the Fermi level, resulting from hole doping. In-plane transport measurements confirm that the material becomes a p-type semiconductor at lower doping levels and exhibits a insulator-to-metal transition at x equal to 1. Sub-gap optical transitions revealed by spectroscopic ellipsometry are explained based on insight from theoretical densities of states and first-principles calculations of optical absorption spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا