ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Monte Carlo study of the metal to insulator transition on a honeycomb lattice with 1/r interactions

145   0   0.0 ( 0 )
 نشر من قبل Lucas Wagner
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Describing correlated electron systems near phase transitions has been a major challenge in computational condensed-matter physics. In this paper, we apply highly accurate fixed node quantum Monte Carlo techniques, which directly work with many body wave functions and simulate electron correlations, to investigate the metal to insulator transition of a correlated hydrogen lattice. By calculating spin and charge properties, and analyzing the low energy Hilbert space, we identify the transition point and identify order parameters that can be used to detect the transition. Our results provide a benchmark for density functional theories seeking to treat correlated electron systems.



قيم البحث

اقرأ أيضاً

150 - N. Paris , K. Bouadim , F. Hebert 2006
We study the transitions from band insulator to metal to Mott insulator in the ionic Hubbard model on a two dimensional square lattice using determinant Quantum Monte Carlo. Evaluation of the temperature dependence of the conductivity demonstrates th at the metallic region extends for a finite range of interaction values. The Mott phase at strong coupling is accompanied by antiferromagnetic (AF) order. Inclusion of these intersite correlations changes the phase diagram qualitatively compared to dynamical mean field theory.
116 - Junsong Sun , Nvsen Ma , Tao Ying 2021
The honeycomb antiferromagnet under a triaxial strain is studied using the quantum Monte Carlo simulation. The strain dimerizes the exchange couplings near the corners, thus destructs the antiferromagnetic order therein. The antiferromagnetic region is continuously reduced by the strain. For the same strain strength, the exact numerical results give a much smaller antiferromagnetic region than the linear spin-wave theory. We then study the strained $XY$ antiferromagnet, where the magnon pseudo-magnetic field behaves quite differently. The $0$th Landau level appears in the middle of the spectrum, and the quantized energies above (below) it are proportional to $n^{frac{1}{3}} (n^{frac{2}{3}})$, which is in great contrast to the equally-spaced ones in the Heisenberg case. Besides, we find the antiferromagnetic order of the $XY$ model is much more robust to the dimerization than the Heisenberg one. The local susceptibility of the Heisenberg case is extracted by the numerical analytical continuation, and no sign of the pseudo-Landau levels is resolved. It is still not sure whether the result is due to the intrinsic problem of the numerical analytical continuation. Thus the existence of the magnon pseudo-Landau levels in the spin-$frac{1}{2}$ strained Heisenberg Hamiltonian remains an open question. Our results are closely related to the two-dimensional van der Waals quantum antiferromagnets and may be realized experimentally.
198 - Jinhua Sun , Donghui Xu , Yi Zhou 2014
Layered antiferromagnetic spin density wave (LAF) state is one of the plausible ground states of charge neutral Bernal stacked bilayer graphene. In this paper, we use determinant quantum Monte Carlo method to study the effect of the electric field on the magnetic order in bilayer Hubbard model on a honeycomb lattice. Our results qualitatively support the LAF ground state found in the mean field theory. The obtained magnetic moments, however, are much smaller than what are estimated in the mean field theory. As electric field increases, the magnetic order parameter rapidly decreases.
We show how to construct fully symmetric, gapped states without topological order on a honey- comb lattice for S = 1/2 spins using the language of projected entangled pair states(PEPS). An explicit example is given for the virtual bond dimension D = 4. Four distinct classes differing by lattice quantum numbers are found by applying the systematic classification scheme introduced by two of the authors [S. Jiang and Y. Ran, Phys. Rev. B 92, 104414 (2015)]. Lack of topological degeneracy or other conventional forms of symmetry breaking, and the existence of energy gap in the proposed wave functions, are checked by numerical calculations of the entanglement entropy and various correlation functions. Our work provides the first explicit realization of a featureless quantum insulator for spin-1/2 particles on a honeycomb lattice.
We investigate the quantum phase transitions of a disordered nanowire from superconducting to metallic behavior by employing extensive Monte Carlo simulations. To this end, we map the quantum action onto a (1+1)-dimensional classical XY model with lo ng-range interactions in imaginary time. We then analyze the finite-size scaling behavior of the order parameter susceptibility, the correlation time, the superfluid density, and the compressibility. We find strong numerical evidence for the critical behavior to be of infinite-randomness type and to belong to the random transverse-field Ising universality class, as predicted by a recent strong disorder renormalization group calculation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا