ﻻ يوجد ملخص باللغة العربية
In this paper, we use multi-frequency angular size measurements of 58 intermediate-luminosity quasars reaching the redshifts $zsim 3$ and demonstrate that they can be used as standard rulers for cosmological inference. Our results indicate that, for the majority of radio-sources in our sample their angular sizes are inversely proportional to the observing frequency. From the physical point of view it means that opacity of the jet is governed by pure synchrotron self-absorption, i.e. external absorption does not play any significant role in the observed angular sizes at least up to 43 GHz. Therefore, we use the value of the intrinsic metric size of compact milliarcsecond radio quasars derived in a cosmology independent manner from survey conducted at 2 GHz and rescale it properly according to predictions of the conical jet model. This approach turns out to work well and produce quite stringent constraints on the matter density parameter $Omega_m$ in the flat $Lambda$CDM model and Dvali-Gabadadze-Porrati braneworld model. The results presented in this paper pave the way for the follow up engaging multi-frequency VLBI observations of more compact radio quasars with higher sensitivity and angular resolution.
In this paper, we present a new compiled milliarcsecond compact radio data set of 120 intermediate-luminosity quasars in the redshift range $0.46< z <2.76$. These quasars show negligible dependence on redshifts and intrinsic luminosity, and thus repr
In this paper, we place constraints on four alternative cosmological models under the assumption of the spatial flatness of the Universe: CPL, EDE, GCG and MPC. A new compilation of 120 compact radio quasars observed by very-long-baseline interferome
A new compilation of $120$ angular-size/redshift data for compact radio quasars from very-long-baseline interferometry (VLBI) surveys motivates us to revisit the interaction between dark energy and dark matter with these probes reaching high redshift
Five compact radio sources, include 0420-014, 1334-127, 1504-166, 2243-123, and 2345-167, were observed at 5GHz by European VLBI (Very Long Baseline Interferometry) Network (EVN) in June, 1996. The primary purpose of this observation was to confirm t
Although the Hubble constant $H_0$ and spatial curvature $Omega_{K}$ have been measured with very high precision, they still suffer from some tensions. In this paper, we propose an improved method to combine the observations of ultra-compact structur