ﻻ يوجد ملخص باللغة العربية
Recent developments on intense laser sources is opening a new field of optical sciences. An intense coherent light beam strongly interacting with the matter causes a coherent motion of a particle, forming a strongly dressed excited particle. A photon emission from this dressed excited particle is a strong nonlinear process causing high-harmonic generation(HHG), where the perturbation analysis is broken down. In this work, we study a coherent photon emission from a strongly dressed excited atom in terms of complex spectral analysis in the extended Floquet-Hilbert-space. We have obtained the eigenstates of the total Hamiltonian with use of Feshbach-Brilloiun-Wigner projection method. In this extended space, the eigenstates of the total Hamiltonian consisting of the radiation field and the atom system have complex eigenvalues whose imaginary part represents the decay rate. Time evolution of the system is represented by the complex eigenvector expansion so that the correlation dynamics between the photon and the atom is fully taken into account. The HHG is interpreted as the irreversible spontaneous photon emission due to the resonance singularity in terms of the multiple Floquet states that are generated by periodic external field. We have found that the interference between the emitted photons over the different Floquet states causes spatial pulse emission correlated with the decay process of the excited atom.
By using the Floquet eigenstates, we derive a formula to calculate the high-harmonic components of the electric current (HHC) in the setup where a monochromatic laser field is turned on at some time. On the basis of this formulation, we study the HHC
Dynamical Casimir effect of the optomechanical cavity interacting with one-dimensional photonic crystal is theoretically investigated in terms of the complex spectral analysis of Floquet-Liouvillian in the symplectic-Floquet space. The quantum vacuum
We study the high harmonic generation (HHG) in Mott insulators using Floquet dynamical mean-field theory (DMFT). We show that the main origin of the HHG in Mott insulators is the doublon-holon recombination, and that the character of the HHG spectrum
A three step model for high harmonic generation from impurities in solids is developed. The process is found to be similar to high harmonic generation in atomic and molecular gases with the main difference coming from the non-parabolic nature of the
We show that the dependence of high-order harmonic generation (HHG) on the molecular orientation can be understood within a theoretical treatment that does not involve the strong field of the laser. The results for H_2 show excellent agreement with t