ترغب بنشر مسار تعليمي؟ اضغط هنا

A Fast Gradient and Function Sampling Method for Finite Max-Functions

96   0   0.0 ( 0 )
 نشر من قبل Elias Salom\\~ao Helou Neto
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper tackles the unconstrained minimization of a class of nonsmooth and nonconvex functions that can be written as finite max-functions. A gradient and function-based sampling method is proposed which, under special circumstances, either moves superlinearly to a minimizer of the problem of interest or superlinearly improves the optimality certificate. Global and local convergence analysis are presented, as well as illustrative examples that corroborate and elucidate the obtained theoretical results.

قيم البحث

اقرأ أيضاً

We study decentralized non-convex finite-sum minimization problems described over a network of nodes, where each node possesses a local batch of data samples. In this context, we analyze a single-timescale randomized incremental gradient method, call ed GT-SAGA. GT-SAGA is computationally efficient as it evaluates one component gradient per node per iteration and achieves provably fast and robust performance by leveraging node-level variance reduction and network-level gradient tracking. For general smooth non-convex problems, we show the almost sure and mean-squared convergence of GT-SAGA to a first-order stationary point and further describe regimes of practical significance where it outperforms the existing approaches and achieves a network topology-independent iteration complexity respectively. When the global function satisfies the Polyak-Lojaciewisz condition, we show that GT-SAGA exhibits linear convergence to an optimal solution in expectation and describe regimes of practical interest where the performance is network topology-independent and improves upon the existing methods. Numerical experiments are included to highlight the main convergence aspects of GT-SAGA in non-convex settings.
Min-max saddle point games appear in a wide range of applications in machine leaning and signal processing. Despite their wide applicability, theoretical studies are mostly limited to the special convex-concave structure. While some recent works gene ralized these results to special smooth non-convex cases, our understanding of non-smooth scenarios is still limited. In this work, we study special form of non-smooth min-max games when the objective function is (strongly) convex with respect to one of the players decision variable. We show that a simple multi-step proximal gradient descent-ascent algorithm converges to $epsilon$-first-order Nash equilibrium of the min-max game with the number of gradient evaluations being polynomial in $1/epsilon$. We will also show that our notion of stationarity is stronger than existing ones in the literature. Finally, we evaluate the performance of the proposed algorithm through adversarial attack on a LASSO estimator.
We propose a new stochastic gradient method for optimizing the sum of a finite set of smooth functions, where the sum is strongly convex. While standard stochastic gradient methods converge at sublinear rates for this problem, the proposed method inc orporates a memory of previous gradient values in order to achieve a linear convergence rate. In a machine learning context, numerical experiments indicate that the new algorithm can dramatically outperform standard algorithms, both in terms of optimizing the training error and reducing the test error quickly.
Although application examples of multilevel optimization have already been discussed since the 90s, the development of solution methods was almost limited to bilevel cases due to the difficulty of the problem. In recent years, in machine learning, Fr anceschi et al. have proposed a method for solving bilevel optimization problems by replacing their lower-level problems with the $T$ steepest descent update equations with some prechosen iteration number $T$. In this paper, we have developed a gradient-based algorithm for multilevel optimization with $n$ levels based on their idea and proved that our reformulation with $n T$ variables asymptotically converges to the original multilevel problem. As far as we know, this is one of the first algorithms with some theoretical guarantee for multilevel optimization. Numerical experiments show that a trilevel hyperparameter learning model considering data poisoning produces more stable prediction results than an existing bilevel hyperparameter learning model in noisy data settings.
185 - Edouard Pauwels 2021
We study the ridge method for min-max problems, and investigate its convergence without any convexity, differentiability or qualification assumption. The central issue is to determine whether the parametric optimality formula provides a conservative field, a notion of generalized derivative well suited for optimization. The answer to this question is positive in a semi-algebraic, and more generally definable, context. The proof involves a new characterization of definable conservative fields which is of independent interest. As a consequence, the ridge method applied to definable objectives is proved to have a minimizing behavior and to converge to a set of equilibria which satisfy an optimality condition. Definability is key to our proof: we show that for a more general class of nonsmooth functions, conservativity of the parametric optimality formula may fail, resulting in an absurd behavior of the ridge method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا