ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of freely floating sub-stellar objects via close encounters

57   0   0.0 ( 0 )
 نشر من قبل Eduard I. Vorobyov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically studied close encounters between a young stellar system hosting a massive, gravitationally fragmenting disk and an intruder diskless star with the purpose to determine the evolution of fragments that have formed in the disk prior to the encounter. Numerical hydrodynamics simulations in the non-inertial frame of reference of the host star were employed to simulate the prograde and retrograde co-planar encounters. The initial configuration of the target system (star plus disk) was obtained via a separate numerical simulation featuring the gravitational collapse of a solar-mass pre-stellar core. We found that close encounters can lead to the ejection of fragments that have formed in the disk of the target prior to collision. In particular, prograde encounters are more efficient in ejecting the fragments than the retrograde encounters. The masses of ejected fragments are in the brown-dwarf mass regime. They also carry away an appreciable amount of gas in their gravitational radius of influence, implying that these objects may possess extended disks or envelopes, as also suggested by Thies et al. (2015). Close encounters can also lead to the ejection of entire spiral arms, followed by fragmentation and formation of freely-floating objects straddling the planetary mass limit. However, numerical simulations with a higher resolution are needed to confirm this finding.

قيم البحث

اقرأ أيضاً

218 - Ivan Hubeny 2017
We present an outline of basic assumptions and governing structural equations describing atmospheres of substellar mass objects, in particular the extrasolar giant planets and brown dwarfs. Although most of the presentation of the physical and numeri cal background is generic, details of the implementation pertain mostly to the code CoolTlusty. We also present a review of numerical approaches and computer codes devised to solve the structural equations, and make a critical evaluation of their efficiency and accuracy.
71 - Sijing Shen 2009
The formation of brown dwarfs (BDs) due to the fragmentation of proto-stellar disks undergoing pairwise encounters was investigated. High resolution allowed the use of realistic initial disk models where both the vertical structure and the local Jean s mass were resolved. The results show that objects with masses ranging from giant planets to low mass stars can form during such encounters from initially stable disks. The parameter space of initial spin-orbit orientations and the azimuthal angles for each disk was explored. An upper limit on the initial Toomre Q value of ~2 was found for fragmentation to occur. Depending on the initial configuration, shocks, tidal-tail structures and mass inflows were responsible for the condensation of disk gas. Retrograde disks were generally more likely to fragment. When the interaction timescale was significantly shorter than the disks dynamical timescales, the proto-stellar disks tended to be truncated without forming objects. The newly-formed objects had masses ranging from 0.9 to 127 Jupiter masses, with the majority in the BD regime. They often resided in star-BD multiples and in some cases also formed hierarchical orbiting systems. Most of them had large angular momenta and highly flattened, disk-like shapes. The objects had radii ranging from 0.1 to 10 AU. The disk gas was assumed to be locally isothermal, appropriate for the short cooling times in extended proto-stellar disks, but not for condensed objects. An additional case with explicit cooling that reduced to zero for optically thick gas was simulated to test the extremes of cooling effectiveness and it was still possible to form objects in this case. Detailed radiative transfer is expected to lengthen the internal evolution timescale for these objects, but not to alter our basic results.
Recent observations have suggested that circumstellar disks may commonly form around young stellar objects. Although the formation of circumstellar disks can be a natural result of the conservation of angular momentum in the parent cloud, theoretical studies instead show disk formation to be difficult from dense molecular cores magnetized to a realistic level, owing to efficient magnetic braking that transports a large fraction of the angular momentum away from the circumstellar region. We review recent progress in the formation and early evolution of disks around young stellar objects of both low-mass and high-mass, with an emphasis on mechanisms that may bridge the gap between observation and theory, including non-ideal MHD effects and asymmetric perturbations in the collapsing core (e.g., magnetic field misalignment and turbulence). We also address the associated processes of outflow launching and the formation of multiple systems, and discuss possible implications in properties of protoplanetary disks.
The discovery of planetary systems outside of the solar system has challenged some of the tenets of planetary formation. Among the difficult-to-explain observations, are systems with a giant planet orbiting a very-low mass star, such as the recently discovered GJ~3512b planetary system, where a Jupiter-like planet orbits an $M$-star in a tight and eccentric orbit. Systems such as this one are not predicted by the core accretion theory of planet formation. Here we suggest a novel mechanism, in which the giant planet is born around a more typical Sun-like star ($M_{*,1}$), but is subsequently exchanged during a dynamical interaction with a flyby low-mass star ($M_{*,2}$). We perform state-of-the-art $N$-body simulations with $M_{*,1}=1M_odot$ and $M_{*,2}=0.1M_odot$ to study the statistical outcomes of this interaction, and show that exchanges result in high eccentricities for the new orbit around the low-mass star, while about half of the outcomes result in tighter orbits than the planet had around its birth star. We numerically compute the cross section for planet exchange, and show that an upper limit for the probability per planetary system to have undergone such an event is $Gammasim 4.4(M_{rm c}/100M_odot)^{-2}(a_{rm p}/{rm AU}) (sigma/1,{rm km},{rm s}^{-1})^{5}$Gyr$^{-1}$, where $a_{rm p}$ is the planet semi-major axis around the birth star, $sigma$ the velocity dispersion of the star cluster, and $M_{rm c}$ the total mass of the star cluster. Hence these planet exchanges could be relatively common for stars born in open clusters and groups, should already be observed in the exoplanet database, and provide new avenues to create unexpected planetary architectures.
This White Paper describes the opportunities for discovery of Jupiter-mass objects with 300K atmospheres. The discovery and characterization of such cold objects is vital for understanding the low-mass terminus of the initial mass function and for op timizing the study of exoplanets by the next generation of large telescopes, space probes and space missions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا