ترغب بنشر مسار تعليمي؟ اضغط هنا

Hamiltonian models for the propagation of irrotational surface gravity waves over a variable bottom

127   0   0.0 ( 0 )
 نشر من قبل Rossen Ivanov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A single incompressible, inviscid, irrotational fluid medium bounded by a free surface and varying bottom is considered. The Hamiltonian of the system is expressed in terms of the so-called Dirichlet-Neumann operators. The equations for the surface waves are presented in Hamiltonian form. Specific scaling of the variables is selected which leads to approximations of Boussinesq and KdV types taking into account the effect of the slowly varying bottom. The arising KdV equation with variable coefficients is studied numerically when the initial condition is in the form of the one soliton solution for the initial depth.

قيم البحث

اقرأ أيضاً

65 - Rossen Ivanov 2017
We examine a two dimensional fluid system consisting of a lower medium bounded underneath by a flatbed and an upper medium with a free surface. The two media are separated by a free common interface. The gravity driven surface and internal water wave s (at the common interface between the media) in the presence of a depth-dependent current are studied under certain physical assumptions. Both media are considered incompressible and with prescribed vorticities. Using the Hamiltonian approach the Hamiltonian of the system is constructed in terms of wave variables and the equations of motion are calculated. The resultant equations of motion are then analysed to show that wave-current interaction is influenced only by the current profile in the strips adjacent to the surface and the interface. Small amplitude and long-wave approximations are also presented.
The propagation of surface water waves interacting with a current and an uneven bottom is studied. Such a situation is typical for ocean waves where the winds generate currents in the top layer of the ocean. The role of the bottom topography is taken into account since it also influences the local wave and current patterns. Specific scaling of the variables is selected which leads to approximations of Boussinesq and KdV types. The arising KdV equation with variable coefficients, dependent on the bottom topography, is studied numerically when the initial condition is in the form of the one soliton solution for the initial depth. Emergence of new solitons is observed as a result of the wave interaction with the uneven bottom.
A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the o cean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.
In this paper a fully Eulerian solver for the study of multiphase flows for simulating the propagation of surface gravity waves over submerged bodies is presented. We solve the incompressible Navier-Stokes equations coupled with the volume of fluid t echnique for the modeling of the liquid phases with the interface, an immersed body method for the solid bodies and an iterative strong-coupling procedure for the fluid-structure interaction. The flow incompressibility is enforced via the solution of a Poisson equation which, owing to the density jump across the interfaces of the liquid phases, has to resort to the splitting procedure of Dodd & Ferrante [12]. The solver is validated through comparisons against classical test cases for fluid-structure interaction like migration of particles in pressure-driven channel, multiphase flows, water exit of a cylinder and a good agreement is found for all tests. Furthermore, we show the application of the solver to the case of a surface gravity wave propagating over a submerged reversed pendulum and verify that the solver can reproduce the energy exchange between the wave and the pendulum. Finally the three-dimensional spilling breaking of a wave induced by a submerged sphere is considered.
In this paper, the propagation of water surface waves over one-dimensional periodic and random bottoms is investigated by the transfer matrix method. For the periodic bottoms, the band structure is calculated, and the results are compared to the tran smission results. When the bottoms are randomized, the Anderson localization phenomenon is observed. The theory has been applied to an existing experiment (Belzons, et al., J. Fluid Mech. {bf 186}, 530 (1988)). In general, the results are compared favorably with the experimental observation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا