ترغب بنشر مسار تعليمي؟ اضغط هنا

Deducing Cosmological Observables from the S-matrix

175   0   0.0 ( 0 )
 نشر من قبل Richard Woodard
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. P. Miao




اسأل ChatGPT حول البحث

We study one loop quantum gravitational corrections to the long range force induced by the exchange of a massless scalar between two massive scalars. The various diagrams contributing to the flat space S-matrix are evaluated in a general covariant gauge and we show that dependence on the gauge parameters cancels at a point considerably {it before} forming the full S-matrix, which is unobservable in cosmology. It is possible to interpret our computation as a solution to the effective field equations --- which could be done even in cosmology --- but taking account of quantum gravitational corrections from the source and from the observer.



قيم البحث

اقرأ أيضاً

We study the frame dependence/independence of cosmological observables under disformal transformations, extending the previous results regarding conformal transformations, and provide the correspondence between Jordan-frame and Einstein-frame variabl es. We consider quantities such as the gravitational constant in the Newtonian limit, redshift, luminosity and angular diameter distances, as well as the distance-duality relation. Also, the Boltzmann equation, the observed specific intensity, and the adiabaticity condition are discussed. Since the electromagnetic action changes under disformal transformations, photons in the Einstein frame no longer propagate along null geodesics. As a result, several quantities of cosmological interest are modified. Nevertheless, we show that the redshift is invariant and the distance-duality relation (the relation between the luminosity distance and the angular diameter distance) still holds in general spacetimes even though the reciprocity relation (the relation between two geometrical distances) is modified.
Both cosmological expansion and black holes are ubiquitous features of our observable Universe, yet exact solutions connecting the two have remained elusive. To this end, we study self-gravitating classical fields within dynamical spherically symmetr ic solutions that can describe black holes in an expanding universe. After attempting a perturbative approach of a known black-hole solution with scalar hair, we show by exact methods that the unique scalar field action with first-order derivatives that can source shear-free expansion around a black hole requires noncanonical kinetic terms. The resulting action is an incompressible limit of k-essence, otherwise known as the cuscuton theory, and the spacetime it describes is the McVittie metric. We further show that this solution is an exact solution to the vacuum Hov{r}ava-Lifshitz gravity with anisotropic Weyl symmetry.
Recently, the variation of the Planck mass in the General Relativistic Einstein-Hilbert action was proposed as a self-tuning mechanism of the cosmological constant, preventing Standard Model vacuum energy from freely gravitating and enabling an estim ation of the magnitude of its observed value. We explore here new aspects of this proposal. We first develop an equivalent Einstein-frame formalism to the current Jordan-frame formulation of the mechanism and use this to highlight similarities and differences of self-tuning to the sequestering mechanism. We then show how with an extension of the local self-tuning action by a coupled Gauss-Bonnet term and a companion four-form field strength, graviton loops can be prevented from incapacitating the degravitation of the Standard Model vacuum energy. For certain cases, we furthermore find that this extension can be recast as a Horndeski scalar-tensor theory and be embedded in the conventional local self-tuning formalism. We then explore the possibility of a unification of inflation with self-tuning. The resulting equations can alternatively be used to motivate a multiverse interpretation. In this context, we revisit the coincidence problem and provide an estimation for the probability of the emergence of intelligent life in our Universe as a function of cosmic age, inferred from star and terrestrial planet formation processes. We conclude that we live at a very typical epoch, where we should expect the energy densities of the cosmological constant and matter to be of comparable size. For a dimensionless quantity to compare the emergence of life throughout the cosmic history of different universes in an anthropic analysis of the multiverse, we choose the order of magnitude difference of the evolving horizon size of a universe to the size of its proton as the basic building block of atoms, molecules, and eventually life. (abridged)
We consider a cosmology with decaying metastable dark energy and assume that a decay process of this metastable dark energy is a quantum decay process. Such an assumption implies among others that the evolution of the Universe is irreversible and vio lates the time reversal symmetry. We show that if to replace the cosmological time $t$ appearing in the equation describing the evolution of the Universe by the Hubble cosmological scale time, then we obtain time dependent $Lambda (t)$ in the form of the series of even powers of the Hubble parameter $H$: $Lambda (t) = Lambda (H)$. Out special attention is focused on radioactive like exponential form of the decay process of the dark energy and on the consequences of this type decay.
We study the cosmology with the running dark energy. The parametrization of dark energy with the respect to the redshift is derived from the first principles of quantum mechanics. Energy density of dark energy is obtained from the quantum process of transition from the false vacuum state to the true vacuum state. This is the class of the extended interacting $Lambda$CDM models. We consider the energy density of dark energy parametrization $rho_text{de}(t)$, which follows from the Breit-Wigner energy distribution function which is used to model the quantum unstable systems. The idea that properties of the process of the quantum mechanical decay of unstable states can help to understand the properties of the observed universe was formulated by Krauss and Dent and this idea was used in our considerations. In the cosmological model with the mentioned parametrization there is an energy transfer between the dark matter and dark energy. In such a evolutional scenario the universe is starting from the false vacuum state and going to the true vacuum state of the present day universe. We find that the intermediate regime during the passage from false to true vacuum states takes place. The intensity of the analyzed process is measured by a parameter $alpha$. For the small value of $alpha$ ($0<alpha <0.4$) this intermediate (quantum) regime is characterized by an oscillatory behavior of the density of dark energy while the for $alpha > 0.4$ the density of the dark energy simply jumps down. In both cases (independent from the parameter $alpha$) the today value of density of dark energy is reached at the value of $0.7$. We estimate the cosmological parameters for this model with visible and dark matter. This model becomes in good agreement with the astronomical data and is practically indistinguishable from $Lambda$CDM model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا