ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards the Automatic Anime Characters Creation with Generative Adversarial Networks

473   0   0.0 ( 0 )
 نشر من قبل Yingtao Tian
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic generation of facial images has been well studied after the Generative Adversarial Network (GAN) came out. There exists some attempts applying the GAN model to the problem of generating facial images of anime characters, but none of the existing work gives a promising result. In this work, we explore the training of GAN models specialized on an anime facial image dataset. We address the issue from both the data and the model aspect, by collecting a more clean, well-suited dataset and leverage proper, empirical application of DRAGAN. With quantitative analysis and case studies we demonstrate that our efforts lead to a stable and high-quality model. Moreover, to assist people with anime character design, we build a website (http://make.girls.moe) with our pre-trained model available online, which makes the model easily accessible to general public.



قيم البحث

اقرأ أيضاً

106 - Sitao Xiang , Hao Li 2018
Deep learning-based style transfer between images has recently become a popular area of research. A common way of encoding style is through a feature representation based on the Gram matrix of features extracted by some pre-trained neural network or some other form of feature statistics. Such a definition is based on an arbitrary human decision and may not best capture what a style really is. In trying to gain a better understanding of style, we propose a metric learning-based method to explicitly encode the style of an artwork. In particular, our definition of style captures the differences between artists, as shown by classification performances, and such that the style representation can be interpreted, manipulated and visualized through style-conditioned image generation through a Generative Adversarial Network. We employ this method to explore the style space of anime portrait illustrations.
In this paper, we propose a novel framework to translate a portrait photo-face into an anime appearance. Our aim is to synthesize anime-faces which are style-consistent with a given reference anime-face. However, unlike typical translation tasks, suc h anime-face translation is challenging due to complex variations of appearances among anime-faces. Existing methods often fail to transfer the styles of reference anime-faces, or introduce noticeable artifacts/distortions in the local shapes of their generated faces. We propose AniGAN, a novel GAN-based translator that synthesizes high-quality anime-faces. Specifically, a new generator architecture is proposed to simultaneously transfer color/texture styles and transform local facial shapes into anime-like counterparts based on the style of a reference anime-face, while preserving the global structure of the source photo-face. We propose a double-branch discriminator to learn both domain-specific distributions and domain-shared distributions, helping generate visually pleasing anime-faces and effectively mitigate artifacts. Extensive experiments on selfie2anime and a new face2anime dataset qualitatively and quantitatively demonstrate the superiority of our method over state-of-the-art methods. The new dataset is available at https://github.com/bing-li-ai/AniGAN .
83 - Alice Xue 2020
Current GAN-based art generation methods produce unoriginal artwork due to their dependence on conditional input. Here, we propose Sketch-And-Paint GAN (SAPGAN), the first model which generates Chinese landscape paintings from end to end, without con ditional input. SAPGAN is composed of two GANs: SketchGAN for generation of edge maps, and PaintGAN for subsequent edge-to-painting translation. Our model is trained on a new dataset of traditional Chinese landscape paintings never before used for generative research. A 242-person Visual Turing Test study reveals that SAPGAN paintings are mistaken as human artwork with 55% frequency, significantly outperforming paintings from baseline GANs. Our work lays a groundwork for truly machine-original art generation.
The mood of a text and the intention of the writer can be reflected in the typeface. However, in designing a typeface, it is difficult to keep the style of various characters consistent, especially for languages with lots of morphological variations such as Chinese. In this paper, we propose a Typeface Completion Network (TCN) which takes one character as an input, and automatically completes the entire set of characters in the same style as the input characters. Unlike existing models proposed for image-to-image translation, TCN embeds a character image into two separate vectors representing typeface and content. Combined with a reconstruction loss from the latent space, and with other various losses, TCN overcomes the inherent difficulty in designing a typeface. Also, compared to previous image-to-image translation models, TCN generates high quality character images of the same typeface with a much smaller number of model parameters. We validate our proposed model on the Chinese and English character datasets, which is paired data, and the CelebA dataset, which is unpaired data. In these datasets, TCN outperforms recently proposed state-of-the-art models for image-to-image translation. The source code of our model is available at https://github.com/yongqyu/TCN.
This paper aims to contribute in bench-marking the automatic polyp segmentation problem using generative adversarial networks framework. Perceiving the problem as an image-to-image translation task, conditional generative adversarial networks are uti lized to generate masks conditioned by the images as inputs. Both generator and discriminator are convolution neural networks based. The model achieved 0.4382 on Jaccard index and 0.611 as F2 score.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا