ترغب بنشر مسار تعليمي؟ اضغط هنا

Opening up the QCD axion window

104   0   0.0 ( 0 )
 نشر من قبل Prateek Agrawal
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new mechanism to deplete the energy density of the QCD axion, making decay constants as high as $f_a simeq 10^{17},rm{GeV}$ viable for generic initial conditions. In our setup, the axion couples to a massless dark photon with a coupling that is moderately stronger than the axion coupling to gluons. Dark photons are produced copiously through a tachyonic instability when the axion field starts oscillating, and an exponential suppression of the axion density can be achieved. For a large part of the parameter space this dark radiation component of the universe can be observable in upcoming CMB experiments. Such dynamical depletion of the axion density ameliorates the isocurvature bound on the scale of inflation. The depletion also amplifies the power spectrum at scales that enter the horizon before particle production begins, potentially leading to axion miniclusters.

قيم البحث

اقرأ أيضاً

An axion-like particle (ALP) with mass $m_phi sim 10^{-15}$eV oscillates with frequency $sim$1 Hz. This mass scale lies in an open window of astrophysical constraints, and appears naturally as a consequence of grand unification (GUT) in string/M-theo ry. However, with a GUT-scale decay constant such an ALP overcloses the Universe, and cannot solve the strong CP problem. In this paper, we present a two axion model in which the 1 Hz ALP constitutes the entirety of the dark matter (DM) while the QCD axion solves the strong CP problem but contributes negligibly to the DM relic density. The mechanism to achieve the correct relic densities relies on low-scale inflation ($m_phi lesssim H_{rm inf}lesssim 1$ MeV), and we present explicit realisations of such a model. The scale in the axion potential leading to the 1 Hz axion generates a value for the strong CP phase which oscillates around $bar{theta}_{rm QCD}sim 10^{-12}$, within reach of the proton storage ring electric dipole moment experiment. The 1 Hz axion is also in reach of near future laboratory and astrophysical searches.
LOFAR, the Low Frequency Array, is a next-generation radio telescope that is being built in Northern Europe and expected to be fully operational at the end of this decade. It will operate at frequencies from 15 to 240 MHz (corresponding to wavelength s of 20 to 1.2 m). Its superb sensitivity, high angular resolution, large field of view and flexible spectroscopic capabilities will represent a dramatic improvement over previous facilities at these wavelengths. As such, LOFAR will carry out a broad range of fundamental astrophysical studies. The design of LOFAR has been driven by four fundamental astrophysical applications: (i) The Epoch of Reionisation, (ii) Extragalactic Surveys and their exploitation to study the formation and evolution of clusters, galaxies and black holes, (iii) Transient Sources and their association with high energy objects such as gamma ray bursts, and (iv) Cosmic Ray showers and their exploitation to study the origin of ultra-high energy cosmic rays. In this conference the foreseen LOFAR work on the epoch of reionisation has been covered by de Bruyn and on cosmic ray showers by Falcke. During this contribution we will first present the LOFAR project with an emphasis on the challenges faced when carrying out sensitive imaging at low radio frequencies. Subsequently, we will discuss LOFARs capabilities to survey the low-frequency radio sky. Main aims for the planned surveys are studies of z>6 radio galaxies, diffuse emission associated with distant clusters and starbursting galaxies at z>2.
In this article we investigate the benefits of increasing the maximum nuclear recoil energy analysed in dark matter (DM) direct detection experiments. We focus on elastic DM-nucleus interactions, and work within the framework of effective field theor y (EFT) to describe the scattering cross section. In agreement with previous literature, we show that an increased maximum energy leads to more stringent upper bounds on the DM-nucleus cross section for the EFT operators, especially those with an explicit momentum dependence. In this article we extend the energy region of interest (ROI) to show that the optimal values of the maximum energy for xenon and argon are of the order of 500 keV and 300 keV, respectively. We then show how, if a signal compatible with DM is observed, an enlarged energy ROI leads to a better measurement of the DM mass and couplings. In particular, for a xenon detector, DM masses of the order of 200 GeV (2 TeV) or lower can be reconstructed for momentum-independent (-dependent) operators. We also investigate three-dimensional parameter reconstruction and apply it to the specific case of scalar DM and anapole DM. We find that opening the energy ROI is an excellent way to identify the linear combination of momentum-dependent and momentum-independent operators, and it is crucial to correctly distinguish these models. Finally, we show how an enlarged energy ROI also allows us to test astrophysical parameters of the DM halo, such as the DM escape speed.
We review results from QCD axion string and domain wall simulations and propagate the associated uncertainties into the calculation of the axion relic density. This allows us to compare different results in the literature and, using cosmological cons traints, to perform statistical inference on the axion mass window in the post-inflationary Peccei-Quinn symmetry breaking scenario. For dark matter axions, this leads to a median dark matter axion mass of 0.50 meV, while the 95% credible interval at highest posterior density is between 0.48 and 0.52 meV. For simulations including string-domain wall decays, these numbers are 0.22 meV and [0.16, 0.27] meV. Relaxing the condition that axions are all of the dark matter, the axion mass window is completed by an upper bound of around 80 meV, which comes from hot dark matter constraints. This demonstrates, at least from the statistical perspective, that the axion mass can be constrained rather precisely once it is possible to overcome the much larger systematic uncertainties.
We discuss phenomenological criteria for defining axion windows, namely regions in the parameter space of the axion-photon coupling where realistic models live. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it wo uld be highly desirable to specify them in terms of precise phenomenological requirements. We first focus on hadronic axion models within post-inflationary scenarios, in which the initial abundance of the new vectorlike quarks $Q$ is thermal. We classify their representations $R_Q$ by requiring that $i)$ the $Q$ are sufficiently short lived to avoid issues with long-lived strongly interacting relics, $ii)$ the theory remains weakly coupled up to the Planck scale. The more general case of multiple $R_Q$ is also studied, and the absolute upper and lower bounds on the axion-photon coupling as a function of the axion mass is identified. Pre-inflationary scenarios in which the axion decay constant remains bounded as $f_aleq 5cdot 10^{11},$GeV allow for axion-photon couplings only about 20% larger. Realistic Dine-Fischler-Srednicki-Zhitnitsky type of axion models also remain encompassed within the hadronic axion window. Some mechanisms that can allow to enhance the axion-photon coupling to values sizeably above the preferred window are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا